
Eyedea LPM SDK

Developer’s guide Version 7.8



Copyright © 2025, Eyedea Recognition s. r. o.

All rights reserved

Eyedea Recognition s. r. o. is not liable for any damage or loss caused by incorrect or inaccurate results or

unauthorized use of the LPM SDK software.

Thales, the Thales logo, are trademarks and service marks of Thales S.A. and are registered in certain coun-

tries. Sentinel, Sentinel Admin Control Center and Sentinel Hardware Key are registered trademarks of

Thales S.A..

NVIDIA, the NVIDIA logo, GeForce, GeForce GTX, CUDA, the CUDA logo are trademarks and/or registered

trademarks of NVIDIA Corporation in the U.S. and/or other countries.

Microsoft Windows, Windows XP, Windows Vista, Windows 7, Windows 8, Windows 8.1, Windows 10,

Windows 11, Windows logo and Visual Studio are registered trademarks of Microsoft Corporation in the

United States and/or other countries.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Ubuntu and Canonical are registered trademarks of Canonical Ltd.

Intel is a trademark of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

Python is a registered trademark of The Python Software Foundation. The Python logos (in several variants)

are use trademarks of The Python Software Foundation as well.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Other names may be trademarks of their respective owners.

All personal information in photos in this document were either anonymized or altered to avoid possibility

of direct or indirect identification of any person.

Contact:

Address: Eyedea Recognition, s.r.o.

Vyšehradská 320/49

128 00, Prague 2

Czech Republic

web: www.eyedea.cz

email: info@eyedea.cz

https://www.eyedea.cz
mailto:info@eyedea.cz


TABLE OF CONTENTS 3

Table of Contents
1 Product Description 4

1.1 Technical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 SystemWorkflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Distribution Contents 7

3 Installation Guide 8

3.1 Pre-installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Sentinel LDK Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Verification of Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.4 Installation Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.5 Managing Licenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.6 License Error Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.7 TensorRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.8 OpenGL Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 SDK Application Interface 12

4.1 Enumerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Examples 34

5.1 LPM SDK Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Modules configuration files 40

6.1 General configuration file config.ini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Detector configuration file config-det.ini . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 ERImage Application Interface 45

7.1 Image Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.2 Application Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8 LPM SDK Licensing 56

8.1 License Key Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8.2 Licenses Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8.3 License Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.4 License Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

9 Third Party Software 60

Eyedea Recogniton, s.r.o.



Product Description 4

1 Product Description
The LPM SDK is a cross-platform software library designed to provide a comfortable detection of car license

plates, ADR and Trash plates, and/or cars via bounding boxes, as well as optical character recognition (OCR)

of plates including plate type and physical size recognition from input images. It defines an interface be-

tween the client’s software and our state-of-the-art detection and recognition modules. This special API

allows simple module administrations and updates without any need for changes to the client’s software.

Each client receives an FTP account automatically created at Eyedea Recognition’s server. This FTP access

serves as two-way communication between the client and Eyedea Recognition, s. r. o.. Clients have an easy

way to regularly upload data samples (or problematic data) to the FTP server, and subsequently receive

the corresponding updates of LPM modules. This systematic approach makes it possible to verify result

statistics and continuously adapt the LPM modules to the client’s specific data, ensuring the best possible

performance.

1.1 Technical Details

Multi-line license plates

License plate

Car bounding box Trash plate

ADR plate

LPM module LPM module LPM module

LPM Library

User’s Code

C/C++

C native API

LPM SDK consists of two parts – base LPM engine and detec-

tion/recognition modules. Both are cross platform libraries with

C interface. The base LPM library is the only entry point, the user

never uses the detection/recognition LPM modules directly. The

module is loaded, configured, and executed using the LPM library.

Each module can contain a detection routine, an OCR routine, or

both.

Eyedea Recogniton, s.r.o.



Product Description 5

The LPM library provides the following APIs:

• C native API

• Python wrapper

• Java wrapper

Officially supported operating systems and platforms:

• Windows 7, 8, 8.1, 10 and 11

32-bit and 64-bit (Visual Studio 2022)

• Ubuntu 18.04 and higher

64-bit and aarch64

• Other platforms on request

Eyedea Recogniton, s.r.o.



Product Description 6

1.2 SystemWorkflow
The workflow of the LPM system consists of: image acquisition, plates or bounding boxes detection, and

OCR of detected plates (where applicable). The image acquisition is not part of this SDK andmust be solved

separately.

The process starts with detection of license plates or ADR/Trash plates or car bounding boxes. Some types

of detections can then be supplied to the OCR stage which returns hypotheses of the plate text and plate

type, together with their confidences. There is no need to crop the detected plates for the OCR stage, as

the OCR stage takes the whole input image and the detection results.

1) Image acquisition

Not part of the SDK

For every single input image:

2) Plates and objects detection

Detect plates and/or other objects

in the input image

3) Plates OCR

Plate text and type recognition

for detected license plates

or ADR tables
TEXT: 2A22222

TYPE: CZ

SIZE: 520x110mm

Eyedea Recogniton, s.r.o.



Distribution Contents 7

2 Distribution Contents
The following list is an excerpt from the LPM SDK directory structure, highlighting the most important

directories and files contained in the software distribution. A brief description of the items is provided.

� LPM SDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . distribution main folder

� LPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LPM engine folder

� include . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LPM header files

� lib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LPM libraries

� examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LPM examples folder

� example-anpr-implink . . . . . . . . . . . . . . . . . . . . . . . . . . . . example of implicit LPM library link

� images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .example images folder

� example-anpr-implink.vcxproj . . . . . . . . . Visual Studio project (only Windows version)

� example.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . example source code

� Makefile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . example makefile (only Linux version)

� modules-v7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LPM modules

� x64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .modules for appropriate architecture

� config_camera_view.ini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . camera view parameters file

� hasp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . license management software folder

� documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SDK documentation folder

� wrappers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SDK wrappers folder

� LICENSE.txt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SDK license

� WhatsNew.txt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .file with release notes for each SDK version

� README.txt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .SDK readme file

Eyedea Recogniton, s.r.o.



Installation Guide 8

3 Installation Guide
Installation of the software licensing daemon is the first step to start using the LPM SDK. The library comes

equipped with a standard third-party software licensing solution, Sentinel LDK by Thales. This chapter will

guide the client through installation on Windows and Linux. In the process, the client will install a dae-

mon service, Sentinel License Manager, that will automatically start upon system startup. The application

enables execution of the encrypted LPM SDK binaries, and management of licenses using a web browser.

3.1 Pre-installation
Prior to the installation of the licensing software, all Sentinel Hardware Keys should be removed from the

target computer based on the recommendation from Thales. Leaving it connected during the installation

process might cause the Sentinel Hardware Key to not be properly recognized by the new installation of

Sentinel License Manager.

Sentinel License Manager does not support read only filesystems (on Windows, the functionality is called

Enhanced Write Filter).

3.2 Sentinel LDK Installation

3.2.1 Windows
Follow these steps to install Sentinel License Manager on a Windows machine:

• Start the command line “cmd” with Administrator privileges.

• Navigate to the [LPM_SDK]/hasp/ directory.

• Execute “dunst.bat” to uninstall any previous versions of Sentinel License Manager.

• Execute “dinst.bat” to install Sentinel License Manager.

3.2.2 Linux
Follow these steps to install Sentinel License Manager on a Linux machine:

• Start the command line and navigate to the [LPM_SDK]/hasp/ directory.

• On 64-bit Linux distributions, install the 32-bit compatibility binaries.

– On Ubuntu 18.04 and higher: Execute “sudo apt-get install libc6:i386”.

• Execute “sudo ./dunst” to uninstall any previous versions of Sentinel License Manager.

• Execute “sudo ./dinst” to install Sentinel License Manager.

– Without compatibility binaries, error “No such file or directory.” might appear.

3.3 Verification of Installation
The software licensing daemon contains a web-based interface, which also allows the client to check the

available licenses. To verify that the installation of Sentinel License Manager was successfully completed,

the client should open a web browser at http://localhost:1947/_int_/devices.html. The web page will be

displayed, as seen in the image below. The client must check that the trial licenses were installed properly,

and that the LPM SDK works on the machine, before ordering a full license. If not, a problem may arise in

the future when connecting the full license, resulting in a licensing failure and additional costs to relicense

the software to another machine. The web page lists all available license keys. Under the “Products” link

in the left pane all available products are listed.

Eyedea Recogniton, s.r.o.

http://localhost:1947/_int_/devices.html


Installation Guide 9

Sentinel License Manager screenshot.

3.4 Installation Failures
OnWindows, antivirus application might break the installation of Sentinel License Manager. If the installa-

tion failed, the client should disable the antivirus application and rerun the installation of Sentinel License

Manager. Even after successful installation, Sentinel License Manager might fail to show up in the web

browser. This can be solved by adding

C:\Windows\system32\hasplms.exe

to the exception list of the antivirus. Port number 1947 must be also added to the exception list of the

Windows firewall, and also to the antivirus exception list, if it uses its own firewall.

3.5 Managing Licenses
It is of the utmost importance that the client understands the licensing schemes used in the Thales Sen-

tinel LDK software protection framework. Otherwise, unrepairable damage might be caused, leading to

additional costs to recover the already purchased licensing keys. The topic of license management is fully

covered in the chapter LPM SDK Licensing.

Eyedea Recogniton, s.r.o.



Installation Guide 10

3.6 License Error Codes
Error codes are outputted to the error stream of the application (typically stderr) using LPM SDK. The user

needs to check the error stream for error codes and fix the issues before deployment. The following error

codes and messages are the most common ones:

• H0007 – Sentinel HASP key not found. (No license for the LPM SDK on the PC.)

• H0033 – Unable to access Sentinel HASP Runtime Environment. (No License Manager found.)

• H0041 – Feature has expired. (The license on the PC has expired, consider renewal.)

The shared library of LPM SDK is encrypted for enhanced software protection. However, in case of failure,

the application does not terminate, but crashes after a few calls to the library; this is a security measure

against reverse engineering but may confuse the users. The client needs to make sure they monitor the

error codes outputted by the error stream to distinguish between programming errors and licensing prob-

lems.

3.7 TensorRT
The LPM SDK can use TensorRT to run detection and OCR models, SDK package contains data files and

command-line utility which can be used to generate TensorRT model for specific target device.

3.7.1 TensorRT LPM SDK Models
For devices with Nvidia GPUs, when TensorRT GPU mode is set, the classifiers cannot be prepared in ad-

vance and the folder

[LPM_SDK]/modules-v*/aarch64/module-name/models

does not include prebuilt .dat files, but only their prototypes. Before running the software for the first time

on a specific Nvidia GPU device type, the .dat files must be created using an utility called edftrt_dat_en-

coderwhich should be located in themodels directory. For example, if the client has 100 identical devices,

they only need to follow this process once and then share the created .dat files among the devices.

To run the edftrt_dat_encoder utility, the client needs to make sure the relevant Nvidia TensorRT libraries

are visible in the system, which can be checked using ldd utility as “ldd edftrt_dat_encoder”. If not found,

the Nvidia TensorRT need to be added to the library path using the following command like:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib/$(uname -m)-linux-gnu/

The edftrt_dat_encoder utility must be executed when there is no other process utilizing resources on

the target device, otherwise the created .dat files will not give the best possible performance. By default,

the generated .dat files use float32 (FP32) computation mode. Using float16 (FP16) computation mode

evaluation speed can be improved, but the effect on accuracy needs to be verified. Use parameter “-h”

with the edftrt_dat_encoder utility to see all options, run the utility without any options to use defaults.

Conversion can take several minites depending on the specific device type. Warnings might appear during

the generation which can be ignored.

Eyedea Recogniton, s.r.o.



Installation Guide 11

3.7.2 Generating Device Specific Models
Here is an example of a command that can be used from inside the models directory:

./edftrt_dat_encoder -p=./ -w=2048 -q=FP16

The “-p” argument denotes the path in which the utility will look for model prototypes (file triples with

extensions .dat.pre, .dat.net, .dat.post) tomake optimized .dat files from, “-q” sets the quantization, and “-

w” sets the workspace size - see the official NVIDIA TensorRT documentation (docs.nvidia.com/deeplearn-

ing/tensorrt/api/c_api/) for the function IBuilderConfig::setMaxWorkspaceSize formore informationabout

this parameter.

3.7.3 Known Issues
As of Nvidia TensorRT 8.2, there are still documented known issues in Nvidia TensorRT library that can

cause the generated .dat files to lose accuracy or completely misbehave. It is up to the customer to verify

the newly created .dat files give expected performance, for example by comparing with the results of LPM

SDK CPU version.

3.8 OpenGL Prerequisites
ForNvidia Jetson devices, we also provide LPMSDKwith Tensorflow Lite backend, which utilizesOpenGL for

GPU processing. To be able to use GPU, the Jetson SD card imagemust be installed with nvidia-l4t-3d-core

package, described as “NVIDIA GL EGL Package”. This package is installed during the default installation

of Nvidia JetPack. When using a remote shell to connect to a device where the client wants to be using

OpenGL GPU mode, X forwarding must be turned off.

Eyedea Recogniton, s.r.o.

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/


SDK Application Interface 12

4 SDK Application Interface
This chapter describes all parts of the SDK’s public application interface for the C/C++ programming lan-

guages, including the defined Enumerators, Structures and all available Functions. It gives the developer a

detailed overview of the SDK and can help orientate the developer during SDK integration.

For information about image structure and image manipulation functions used by SDK see chapter ERIm-

age.

4.1 Enumerators
This section defines the API enumerators which are used in the LPM SDK:

LpmViewType

LpmViewType is used to specify the type of the camera view in the LpmCameraViewParams structure.

• LPM_VIEW_FRONTAL = 0

Frontal images of cars (e. g. overhead installation on motorway gantries).

• LPM_VIEW_GENERIC = 1

Generic images of cars (e. g. camera in a moving vehicle).

LpmDetectionLabel

LpmDetectionLabel is used to specify the type of detection input for the LpmRunOcr() function.

• LPM_LABEL_DEFAULT = 0

Default label value for generic usage.

• LPM_LABEL_PERSON = 200

Generic person object.

• LPM_LABEL_LP = 1000

Generic license plate.

• LPM_LABEL_LP_EU_ONE_LINE = 1001

European license plate.

• LPM_LABEL_LP_EU_MULTI_LINE = 1002

European multiline license plate.

• LPM_LABEL_LP_NORTH_AMERICA = 1200

North American license plate.

• LPM_LABEL_LP_ASIA_PACIFIC = 1300

Asian license plate.

• LPM_LABEL_LP_MIDDLE_EAST = 1400

Middle Eastern license plate.

• LPM_LABEL_ADR = 2000

ADR (the European Agreement on International Carriage of Dangerous Goods by Road).

• LPM_LABEL_ADR_STRING = 2001

ADR with text.

• LPM_LABEL_ADR_EMPTY = 2002

Empty ADR.

Eyedea Recogniton, s.r.o.



SDK Application Interface 13

• LPM_LABEL_TRASH = 2100

Plate indicating trash load.

• LPM_LABEL_SPEED_LIMIT = 2200

Speed limit sticker.

• LPM_LABEL_OVERSIZE_LOAD = 2210

Oversize load sign e. g. ”CONVOI EXCEPTIONNEL”.

• LPM_LABEL_VIGNETTE = 2300

Vignette sticker.

• LPM_LABEL_VEHICLE = 3000

General vehicle bounding box

• LPM_LABEL_VEHICLE_FRONT = 3001

Frontal vehicle bouding box

• LPM_LABEL_VEHICLE_REAR = 3002

Rear vehicle bounding box

• LPM_LABEL_VEHICLE_WINDSHIELD = 3010

Vehicle windshield

• LPM_LABEL_VEHICLE_WHEEL = 3020

Vehicle wheel.

• LPM_LABEL_VEHICLE_CAR = 3101

Bounding box of a car.

• LPM_LABEL_VEHICLE_MTB = 3102

Bounding box of a motorcycle.

• LPM_LABEL_VEHICLE_SOFT = 3103

Bounding box of a soft mobility vehicle.

• LPM_LABEL_VEHICLE_COMBO = 3300

Combination of multiple vehicles.

Eyedea Recogniton, s.r.o.



SDK Application Interface 14

4.2 Structures
This section covers information about the structures used in the SDK’s public application interface. Lpm-

ModuleInfo, LpmPropertyFlags, LpmLicenseInfo, and LpmDateTime structures are used to get information

about available modules and their properties, LpmCameraViewParams contains information about the

camera view and is used during loading of modules, LpmBoundingBox is used to store different bounding

boxes coordinates, LpmDetResult, LpmDetection, LpmOcrHypothesis, LpmLpDimensions and LpmTextLine

store all data about detections or OCR results, LpmModuleConfig is used for configuration of loaded mod-

ules. In version 7.3 and higher, structures LpmDetResult_extension1, LpmDetection_extension1 and Lpm-

ModuleConfig_extension1 are used to store additional information while keeping backward compatibility.

In version 7.8 LpmDetection_extension2 was added to store segmentations of detections.

LpmModuleInfo

typedef struct {
char name[LPM_MAX_STR_LEN];
int id;
char date[LPM_MAX_STR_LEN];
char path[LPM_MAX_PATH_LEN];
int version;
int subversion;
char det_type[LPM_MAX_STR_LEN];
char obj_type[LPM_MAX_STR_LEN];
char rcg_type[LPM_MAX_STR_LEN];
char input_img_type[LPM_MAX_STR_LEN];
double pxl_aspect_ratio;
char lp_countries[LPM_MAX_STR_LEN];
int lp_min_mean_max_width[3];
int lp_min_mean_max_height[3];
double lp_min_mean_max_rotation[3];
int is_active;
LpmPropertyFlags prop;
LpmLicenseInfo *license_info;

} LpmModuleInfo;

Eyedea Recogniton, s.r.o.



SDK Application Interface 15

LpmModuleInfo represents all information you can get about a module by using the lpmGetModuleInfo

function. The structure contains the following fields:

• name

Full name of the module.

• id

Id of the module.

• date

Release date of the module in “YYYY-mm-dd” format.

• path

Full path to the module.

• version

Version number of the module.

• subversion

Subversion number of the module.

• det_type

Char array with the detector type (“frontal”, “generic”, “lfrontal”).

• obj_type

Char array with the type of the detected object (“license plates”, “adr plates”, ...).

• rcg_type

Char array with the recognition type (“ceu3”, “cz”, “adr”, “vcl”, ...).

• input_img_type

Input image type (e.g. “ERImage”).

• pxl_aspect_ratio

Desired pixels aspect ratio of input images.

• lp_countries

Supported LP countries codes returned as a comma separated list (e.g. “CZ,SK,A” ).

• lp_min_mean_max_width

Required LP width range.

• lp_min_mean_max_height

Required LP height range.

• lp_min_mean_max_rotation

Range of LP inplane rotation.

• is_active

Switch indicating whether the module is active or not.

• prop

Module properties in the LpmPropertyFlags structure. See header file lpm_types.h for more infor-

mation.

• license_info

Information about the license in the LpmLicenseInfo struct.

LpmPropertyFlags

typedef long long LpmPropertyFlags;

LpmPropertyFlags contains bit flags which describe the properties of the module, detector type, object

type, OCR type and recognition type. For specific values, see the lpm_types.h header file.

Eyedea Recogniton, s.r.o.



SDK Application Interface 16

LpmLicenseInfo

typedef struct {
int is_valid;
LpmDateTime expiration_date;
int is_using_counter;
unsigned long executions_left;

} LpmLicenseInfo;

LpmLicenseInfo contains information about themodule license. The structure contains the following fields:

• is_valid

Flag determining whether the license is valid or not. Zero means invalid, otherwise valid.

• expiration_date

License expiration date.

Note: the license is time-unlimited if all fields of LpmDateTime structure are zeros.

• is_using_counter

The counter is enabled if non-zero.

• executions_left

Number of module executions left. License is execution-unlimited if is_using_counter is zero.

LpmDateTime

typedef struct {
unsigned int year;
unsigned char month;
unsigned char day_of_month;
unsigned char hour;
unsigned char minute;
unsigned char second;

} LpmDateTime;

LpmDateTime contains date and time fields. The structure contains the following fields:

• year

Year in 4-digit format.

• month

Month 1-12.

• day_of_month

Day 1-31.

• hour

Hour 0-23.

• minute

Minute 0-59.

• second

Second 0-59.

LpmCameraViewParams

typedef struct {
LpmViewType view_type;
unsigned int min_horizontal_resolution;
unsigned int max_horizontal_resolution;
float density_ratio;

} LpmCameraViewParams;

LpmCameraViewParams contains the configuration of camera view parameters which are sent to every

module during module initialization using lpmLoadModule(). The structure contains the following fields:

Eyedea Recogniton, s.r.o.



SDK Application Interface 17

• view_type

LpmViewType with values LPM_VIEW_FRONTAL or LPM_VIEW_GENERIC.

• min_horizontal_resolution

Minimal horizontal resolution in number of pixels per meter.

• max_horizontal_resolution

Maximal horizontal resolution in number of pixels per meter.

• density_ratio

Camera pixel density ratio which is defined as vertical pixel density / horizontal pixel density. For

standard cameras with square pixels, use value 1.

IMPORTANT: Camera view parameters do NOT apply when using GPU capable detection modules

which work in a different way than previous modules.

LpmModuleConfig

typedef struct {
int compute_on_gpu;
int gpu_device_id;
LpmModuleConfig_extension1 *extras;

} LpmModuleConfig;

LpmModuleConfig contains the parameters formodule initializationwhich are sent to everymodule during

module initialization using lpmLoadModule(). Note that in version 7.3 some fields were deprecated, and a

new extension structure was introduced.

The structure contains the following fields:

• compute_on_gpu

DEPRECATED specifies whether the computation should be done on a CPU=0 or a GPU=1.

• gpu_device_id

DEPRECATED GPU device identifier (used only when the computation is running on a GPU).

• extras

Extension of the configuration structure,must be NULL if not in use. Used in version 7.3 and higher.

LpmModuleConfig_extension1

typedef struct {
const char *lpm_config_filename;
int ocr_compute_on_gpu;
int ocr_gpu_device_id;
int ocr_num_threads;
int disable_ocr;
const char *det_config_filename;
int det_compute_on_gpu;
int det_gpu_device_id;
int det_num_threads;
int disable_det;
void *extras;

} LpmModuleConfig_extension1;

Extension of the configuration structure for module initialization used in version 7.3 and higher. Structure

contains the following fields:

• lpm_config_filename

Filename of the module’s configuration file (config.ini by default if NULL).

• ocr_compute_on_gpu

Specifies if the OCR computation should be done on a CPU=0 or a GPU=1.

Eyedea Recogniton, s.r.o.



SDK Application Interface 18

• ocr_gpu_device_id

GPU device identifier (used only when the computation is running on a GPU) for the OCR.

• ocr_num_threads

Specifies the number of threads available for the OCR (used only when the computation is running

on a CPU). Uses approximately 90% of logical processors if set to 0 or negative.

• disable_ocr

If set to 1, the OCR submodule will not be loaded and will not be available.

• det_config_filename

Filename of the detector’s configuration file (config-det.ini by default if NULL).

• det_compute_on_gpu

Specifies if the computation should be done on a CPU=0 or a GPU=1 for the detector.

• det_gpu_device_id

GPU device identifier (used only when the computation of the detector is running on a GPU).

• det_num_threads

Specifies number of threads available for the detector (used only when the computation is running

on a CPU). Use approximately 90% of logical processors if set to 0 or negative.

• disable_det

If set to 1, the detection submodule will not be loaded and will not be available.

• extras

General void pointer allocated for future use,must be NULL if not in use.

IMPORTANT: Be carefulwhen setting thenumber of threads byocr_num_threadsordet_num_threads,

as setting a high value (same as number of logical processors) can lead to poor performance because

LPM threads may block other processes, including the system processes needed by LPM.

LpmBoundingBox

typedef struct {
float top_left_col;
float top_left_row;
float top_right_col;
float top_right_row;
float bot_left_col;
float bot_left_row;
float bot_right_col;
float bot_right_row;

} LpmBoundingBox;

LpmBoundingBox represents bounding box with zero based coordinates starting from top left corner of

image. Bounding boxes are used either for positions of detections or for specification of the detection

area.

The structure contains the following fields:

• top_left_col

Top left column.

• top_left_row

Top left row.

• top_right_col

Top right column.

• top_right_row

Top right row.

• bot_left_col

Bottom left column.

• bot_left_row

Bottom left row.

• bot_right_col

Bottom right column.

• bot_right_row

Bottom right row.

Eyedea Recogniton, s.r.o.



SDK Application Interface 19

LpmDetResult

typedef struct {
int lpm_id;
int lpm_idx;
int num_detections;
LpmDetection *detections;
LpmDetection_extension1 *extras;

} LpmDetResult;

LpmDetResult structure holds an array of detections.

The structure contains the following fields:

• lpm_id

ID of the the used LPM module.

• lpm_idx

Index of the used LPM module.

• num_detections

Number of detections.

• detections

Array of detections.

• extras

Additional details for detections, NULL if not in use. Used in version 7.3 and higher.

LpmDetResult_extension1

typedef struct {
LpmDetection_extension1 *detections;
void *extras;

} LpmDetResult;

LpmDetResult_extension1 structure holds an array of additional information for detections in version 7.3

or higher.

The structure contains the following fields:

• detections

An array of additional information for detections.

• extras

General void pointer allocated for future use, NULL if not in use.

LpmDetection

typedef struct {
double confidence;
LpmBoundingBox position;
LpmDetectionLabel label;
ERImage image;
double affine_mapping[6];

} LpmDetection;

LpmDetection contains data related to a single license plate or ADR plate or carbox detection.

The structure contains the following fields:

• confidence

Plate detection confidence factor.

• position

License plate position.

Eyedea Recogniton, s.r.o.



SDK Application Interface 20

• label

Detection type label.

• image

The image crop of the detection. Please note that generation of this image can be disabled in con-

figuration files.

• affine_mapping

Array with affine mapping from plate image coordinates to source image coordinates. The array

contains the first two rows of the affine transformation matrix, saved row-wise.

LpmDetection_extension1

typedef struct {
float occlusion;
int truncated;
int cluster_id;
double cluster_confidence;
LpmDetection_extension2 *extras;

} LpmDetection_extension1;

LpmDetection_extension1 contains additional data related to a single detection in version 7.3 and higher.

The structure contains the following fields:

• occlusion

Specifies how much the detection is occluded. Negative value - not known, 0.0f - not occluded,

1.0f - fully occluded.

• truncated

Contains -1 if not known, 0 if the detection is not truncated, 1 if it is truncated (the bbox does not

cover the whole object).

• cluster_id

ID of the cluster, to which this detection belongs. -1 if the cluster is not known, 0 means undefined,

ID starts generally at 1. Detections of objects which are physically connected have same cluster_id,

for example bounding box and license plate of same car will have same cluster_id.

• cluster_confidence

Confidence factor for cluster_id prediction.

• extras

Pointer to LpmDetection_extension2, NULL if not in use. Used in version 7.8 and above, when used

with suitable module.

LpmDetection_extension2

typedef struct {
ERImage segmentation;
int segmentation_top_left_col;
int segmentation_top_left_row;
int segmentation_width;
int segmentation_height;
int combo_cluster_id;
double combo_cluster_confidence;
int parent_idx;
void *extras;

} LpmDetection_extension2;

LpmDetection_extension2 contains additional data related to image segmentation of detection in version

7.8 and higher when using module containting this feature.

The structure contains the following fields:

Eyedea Recogniton, s.r.o.



SDK Application Interface 21

• segmentation

Image segmentation of the detection. Empty image if not in use.

• segmentation_top_left_col

Top left column of the segmentation in the source image.

• segmentation_top_left_row

Top left row of the segmentation in the source image.

• segmentation_width

Target width of the segmentation in the source image. If the ERImage segmentation width does not

match this width, the segmentation must be resized.

• segmentation_height

Target height of the segmentation in the source image. If the ERImage segmentation height does

not match this height, the segmentation must be resized.

• combo_cluster_id

ID of the combo cluster, to which this detection belongs. -1 if the cluster is not known, 0 means

undefined, ID starts generally at 1. Detections of objects which are physically connected have same

combo_cluster_id, for example bounding boxes of tractor and trailer will have same combo_clus-

ter_id.

• combo_cluster_confidence

Confidence factor for combo_cluster_id prediction.

• parent_idx

Index of a hierarchical parent detection (referes both into the array detections inside LpmDetResult

and LpmDetResult_extension1). Contains -1 if node does not have a parent.

• extras

General void pointer allocated for future use, NULL if not in use.

LpmOcrResult

typedef struct {
int lpm_id;
int lpm_idx;
int num_hypotheses;
LpmOcrHypothesis *hypotheses;

} LpmOcrResult;

LpmOcrResult structure holds an array of OCR hypotheses related to a single detection.

The structure contains the following fields:

• lpm_id

ID of the used LPM module.

• lpm_idx

Index of the used LPM module.

• num_hypotheses

Number of OCR-hypotheses.

• hypotheses

Array of OCR-hypotheses.

Eyedea Recogniton, s.r.o.



SDK Application Interface 22

LpmOcrHypothesis

typedef struct {
double confidence;
unsigned int num_lines;
LpmTextLine *text_lines;
char *plate_type;
double plate_type_confidence;
LpmLpDimensions lp_dimensions;
double *lp_dimensions_confidence;
void *extras;

} LpmOcrHypothesis;

LpmOcrHypothesis structure holds one OCR hypothesis.

The structure contains the following fields:

• confidence

Confidence factor for the current OCR result.

• num_lines

Number of license/ADR plate text lines.

• text_lines

Array of text lines of type LpmTextLine of the current license/ADR plate.

• plate_type

A NULL-terminated string pointing to international license plate code.

Note: When reading ADR plates, the value is “ADR” or “TRASH”. If the value is “UNK”, then it was

recognized as a false positive detection.

• plate_type_confidence

Confidence for the plate type prediction.

• lp_dimensions

Predicted physical dimensions of the license plate.

• lp_dimensions_confidence

Confidence for the dimensions prediction.

• extras

General void pointer allocated for future use, NULL if not in use.

LpmLpDimensions

typedef struct {
unsigned int physical_width;
unsigned int physical_height;

} LpmLpDimensions;

LpmLpDimensions structure holds a physical width and height of a license plate in mm.

The structure contains the following fields:

• physical_width

Physical width of the license plate in mm.

• physical_height

Physical height of the license plate in mm.

Eyedea Recogniton, s.r.o.



SDK Application Interface 23

LpmTextLine

typedef struct {
double line_confidence;
unsigned int length;
int *characters;
double *characters_confidence

} LpmTextLine;

LpmTextLine structure holds all data about one line of the license/ADR plate text.

The structure contains the following fields:

• line_confidence

Output confidence for the whole line.

• length

Text length (i.e. number of characters).

• characters

Text in Unicode (UTF-32) of length-many characters.

• characters_confidence

Array of length-many items containing the confidence for each character.

4.3 Functions
This chapter contains information about the LPM library functions present in the public API. The chapter

is divided into four parts. The first part describes the functions for handling the LPM engine, the second

part describes functions for handling the LpmCameraViewParams structure, the third section describes

all functions related to loading/unloading/running LPM modules and the fourth section describes error

logging related functions.

4.3.1 Main LPM engine functions
This part defines the API functions which are designed to initialize the LPM engine and to free the LPM

engine, as well as to get the engine version and compilation date. The functions are: lpmInit(), lpmFree(),

lpmVersion() and lpmCompilationDate(). These functions are declared in the lpm.h file.

lpmInit

Initializes the LPM engine and searches the given directory for installed LPM modules.

Specification:

int lpmInit(const char *lpm_directory, LPMState *lpm_state)

Input:

• lpm_directory

LPM module base directory (e.g. “../../modules-v7/x64”).

• lpm_state

LPM state structure (LPM context) to be initialized.

Returns:

• 0 on success, non-zero value otherwise

Description:

The function lpmInit() initializes the LPM engine and searches the given directory (e.g. “../../modules-

v7/x64”) for installed modules while assigning them unique, zero-based indices. Assigned indices range

Eyedea Recogniton, s.r.o.



SDK Application Interface 24

from zero to the number of installed modules - 1. Function returns 0 on success.

Example:

LPMState lpm_state;
int ret_code;

if ((ret_code = lpmInit("../../modules-v7/x64", &lpm_state)) != 0)
{
// error handling
return -1;
}

// lpm_state can be used here

lpmFree

Frees the initialized LPM engine.

Specification:

void lpmFree(LPMState *lpm_state);

Input:

• lpm_state

The LPM state created by lpmInit() function.

Description:

The function lpmFree() is used for freeing the LPM engine. When the SDK is not needed anymore, for

example at the end of the program, all underlying structuresmust be deallocated. The input of the function

call is a pointer to the structure LPMState, which was initialized using the lpmInit() function during engine

initialization.

IMPORTANT: Always free the LPM engine when it is not needed anymore, as otherwise your program

will have memory leaks.

Example:

LPMState lpm_state;
lpmInit("../../modules-v6/x64", &lpm_state);
// code using lpm_state
// ...
lpmFree(&lpm_state);

lpmVersion

Returns the LPM engine version.

Specification:

unsigned long lpmVersion(void);

Returns:

• LPM engine version.

Description:

The function lpmVersion() returns the version of the LPM engine coded into one unsigned long integer. The

least significant byte stores the subversion number and the second least significant byte stores the version

number.

Eyedea Recogniton, s.r.o.



SDK Application Interface 25

Example:

unsigned long longversion = lpmVersion();
unsigned char version = (unsigned char)(lpmVersion() >> CHAR_BIT);
unsigned char subversion = (unsigned char)(lpmVersion());

lpmCompilationDate

Returns the compilation date of the LPM engine.

Specification:

char const *lpmCompilationDate(void);

Returns:

• LPM compilation date.

Description:

The function lpmCompilationDate() returns the compilation date of the LPM engine in Mmm-dd-yyyy for-

mat.

Example:

char const *compilation_date = lpmCompilationDate();
printf("Compilation date: %s\n", compilation_date);

4.3.2 Camera view configuration functions
This part defines the API functions which are designed for handling the LpmCameraViewParams structure.

The function lpmLoadViewConfig() reads this structure from a file and lpmWriteViewConfig() writes this

structure to a text file. These functions are declared in the lpm.h file.

lpmLoadViewConfig

Loads the camera view parameters from file.

Specification:

int lpmLoadViewConfig(const char *filename, LpmCameraViewParams *camera_view_params);

Input:

• filename

Path to a file, from which the config should be loaded, or NULL to use default parameters.

• camera_view_params

Structure to be loaded with parameters from a given file.

Returns:

• 0 on success, error code otherwise.

Description:

The function lpmLoadViewConfig() loads camera view parameters from a file specified by the filename pa-

rameter into the parameter camera_view_params. If the parameter filename is NULL, then default camera

view parameters are returned. Camera view parameters stored in LpmCameraViewParams are used while

loading LPM modules by the lpmLoadModule() function.

Eyedea Recogniton, s.r.o.



SDK Application Interface 26

Example:

LpmCameraViewParams camera_view_params;
if (lpmLoadViewConfig("config_camera_view.ini", &camera_view_params) != 0)
{

// Error handling
}

IMPORTANT: Camera view parameters do NOT apply when using GPU capable modules which work

in a different way than previous modules.

lpmWriteViewConfig

Writes the camera view parameters to a given file.

Specification:

int lpmWriteViewConfig(const char *filename, LpmCameraViewParams camera_view_params);

Input:

• filename

Path to the file where camera view parameters will be written.

• camera_view_params

Pointer to LpmCameraViewParams to write.

Returns:

• 0 – File was successfully written.

• other – Error while saving file.

Description:

The function lpmWriteViewConfig() writes the structure LpmCameraViewParamswith camera view param-

eters to the given file.

Example:

LpmCameraViewParams cvp;
cvp.view_type = LPM_VIEW_FRONTAL;
cvp.camera_aspect = 1.f;
cvp.min_horizontal_resolution = 175;
cvp.max_horizontal_resolution = 360;

lpmWriteViewConfig("../../modules-v7/config_camera_view.ini", cvp);

4.3.3 LPM modules handling functions
This part defines the API functions which are designed to handle LPM modules - to load them, run them,

get information about them and to free them. The function lpmLoadModule() is used to load a LPM mod-

ule, lpmFreeModule() to free a module, lpmRunDet() and lpmRunOcr() to run detection and OCR modules

respectively, lpmFreeDetResult() and lpmFreeOcrResult() to free the returned results, lpmGetNumAvlb-

Modules() to get the number of available LPMmodules, lpmGetModuleIndex() and lpmGetModuleIndexBy-

Name() to get the module index by ID or name, lpmGetModuleInfo() to get all information about modules.

These functions are declared in the lpm.h file.

Eyedea Recogniton, s.r.o.



SDK Application Interface 27

lpmLoadModule

Loads an LPM module with a given index.

Specification:

int lpmLoadModule(LPMState lpm_state, int module_index,
LpmCameraViewParams *camera_view_params,
const LpmModuleConfig *module_config);

Input:

• lpm_state

The LPM state created by the lpmInit() function.

• module_index

Index of the LPM module you wish to load.

Note that module index and module ID are two different things.

• camera_view_params

Pointer to optional camera view parameters. Use NULL for default parameters.

• module_config

Pointer to optional module configuration parameters. Use NULL to load values from configuration

file.

Returns:

• 0 – the module was successfully initialized.

• other – Error while initializing the module.

0 – the module was successfully initialized.

other – Error while initializing the module.

Description:

The function lpmLoadModule() initializes the LPM module with the given index. Module functions can be

called after successful initialization. The LPM layer allows the user to activate and work with multiple mod-

ules simultaneously. The appropriate module index can be retrieved from the module ID and version using

the lpmGetModuleIndex() function or the lpmGetModuleIndexByName() function, if the module name is

known. The third parameter with camera view config is optional - pass in NULL to use default values. The

fourth parameter with module config is also optional, pass in NULL to load the values from the module-

specific configuration file.

Example:

int idx = 1;
LpmCameraViewParams camera_view_params;
// Initialize camera_view_params here...
LpmModuleConfig module_config;
// Initialize module_config here...

if (lpmLoadModule(lpm_state, idx, &camera_view_params, &module_config) != 0)
{

// Error handling
}
// Use module functions here

IMPORTANT: Always free the LPM module when it is not needed anymore using lpmFreeModule(),

otherwise your program will have memory leaks.

Eyedea Recogniton, s.r.o.



SDK Application Interface 28

lpmFreeModule

Frees previously loaded LPM module with the given index.

Specification:

void lpmFreeModule(LPMState lpm_state, int module_index);

Input:

• lpm_state

The LPM state created by the lpmInit() function.

• module_index

Index of the LPM module to free.

Description:

The function lpmFreeModule() frees the previously loaded LPM module.

Example:

lpmLoadModule(lpm_state, idx, NULL, NULL); // Init module
// Use module here
// ...
lpmFreeModule(lpm_state, idx); // Free module

lpmRunDet

Runs license/ADR plate detection on the given image.

Specification:

LpmDetResult *lpmRunDet(LPMState lpm_state, int module_index,
ERImage image, const LpmBoundingBox *bounding_box);

Input:

• lpm_state

The LPM state created by lpmInit() function.

• module_index

Index of LPM module to use. Note that module index and module ID are two different things.

• image

ERImage structure containing the input image for detection.

• bounding_box

The bounding box of a detection area.

Returns:

• NULL

Error during computation occurred.

• other

LpmDetResult structure with all detections.

Description:

The function lpmRunDet() runs LPM detection module specified by module index idx on supplied im-

age. Scanning area is specified by LpmBoundingBox structure. For a more detailed example, see the Li-

cense/ADR plates detection part in the Examples section.

Eyedea Recogniton, s.r.o.



SDK Application Interface 29

Example:

LpmBoundingBox bb; // Variable holding bounding box of detector area
bb.top_left_col = 0;
bb.top_left_row = 0;
bb.bot_right_col = er_image.width - 1;
bb.bot_right_row = er_image.height - 1;

LpmDetResult *det_result = NULL; // A pointer to the detection result structure
if ((det_result = lpmRunDet(lpm_state, idx, er_image, &bb)) == NULL) // Run detection
{

// Error handling
}
// Working with result

IMPORTANT: With new GPU capable detection models, size and aspect ratio of bounding box can

affect detection performance. Be careful when using very wide or very high bounding boxes.

IMPORTANT: Always free the structure with the detection result when it is not needed anymore using

lpmFreeDetResult(), otherwise your program will have memory leaks.

lpmFreeDetResult

Frees detection result structure generated by lpmRunDet().

Specification:

void lpmFreeDetResult(LPMState lpm_state, LpmDetResult *detection_result);

Input:

• lpm_state

The LPM state created by lpmInit() function.

• detection_result

Pointer to the detection result structure to be freed.

Description:

The function lpmFreeDetResult() frees the detection result structure generated by lpmRunDet().

Example:

LpmDetResult *det_result = lpmRunDet(lpm_state, idx, er_image, &bb); // Run detection
// Working with the result
// ...
lpmFreeDetResult(lpm_state, det_result); // Free detection result

lpmRunOcr

Runs OCR on the given image.

Specification:

LpmOcrResult *lpmRunOcr(LPMState lpm_state, int module_index,
ERImage image, const LpmBoundingBox *detection_position,
LpmDetectionLabel detection_label);

Input:

• lpm_state

The LPM state created by lpmInit().

• module_index

Index of the LPM module to use. Note that module index and module ID are two different things.

Eyedea Recogniton, s.r.o.



SDK Application Interface 30

• image

ERImage structure containing the input image.

• detection_position

The 4-point position of the detection.

• detection_label

The detection label specifying the type of detection; can be obtained from the LpmDetection struc-

ture if using the lpmRunDet() function.

Returns:

• NULL – Error during computation occurred.

• other – LpmOcrResult structure with all detections.

Description:

The function lpmRunOcr() runs OCR on a supplied image. The detection area is specified by the LpmBound-

ingBox structure and the detection label by the LpmDetectionLabel structure. Usually, the bounding box

and detection label are supplied to the OCR function from the detection output of lpmRunDet() function.

Example:

LpmOcrResult *ocr_result = NULL; // A pointer to the OCR result structure
if ((ocr_result = lpmRunOcr(lpm_state, idx, er_image,

&(det_result->detections[j].position),
det_result->detections[j].label)) != NULL)

{
// Error handling

}

IMPORTANT: Always free the structure with the OCR result when it is not needed anymore using lpm-

FreeOcrResult(), otherwise your program will have memory leaks.

lpmFreeOcrResult

Frees the detection result structure generated by lpmRunOcr().

Specification:

void lpmFreeOcrResult(LPMState lpm_state, LpmOcrResult *ocr_result);

Input:

• lpm_state

The LPM state created by the lpmInit() function.

• ocr_result

Pointer to the OCR result structure to be freed.

Description:

The function lpmFreeOcrResult() frees the detection result structure generated by lpmRunOcr().

Example:

LpmOcrResult *ocr_result; // A pointer to the OCR result structure
if ((ocr_result = lpmRunOcr(lpm_state, idx, er_image,

&(det_result->detections[j].position),
det_result->detections[j].label)) != NULL)

{
// Error handling

}
// Working with the result
lpmFreeOcrResult(lpm_state, ocr_result); // Free OCR result

Eyedea Recogniton, s.r.o.



SDK Application Interface 31

lpmGetNumAvlbModules

Gets the number of available LPM modules.

Specification:

int lpmGetNumAvlbModules(LPMState lpm_state);

Input:

• lpm_state

The LPM state created by the lpmInit() function.

Returns:

• -1 – Error during computation occurred.

• other – Number of LPM modules.

Description:

The function lpmGetNumAvlbModules() returns the number of available LPM modules.

Example:

int num_available_modules = lpmGetNumAvlbModules(lpm_state);

lpmGetModuleIndex

Gets the LPM module index (handle) from the module ID and its version.

Specification:

int lpmGetModuleIndex(LPMState lpm_state, int module_id, int version, int subversion);

Input:

• lpm_state

The LPM state created by the lpmInit() function.

• module_id

ID of the module.

• version

Version of the module.

• subversion

Subversion of the module.

Returns:

• -1 – Error during computation occurred.

• other – Module index.

Description:

The function lpmGetModuleIndex() returns the LPM module index (handle) from the module ID and its

version. Module indices can vary with each program execution because they depend on the search order

of the givenmodule directory. Set the version and subversion to zero to get the index of the latest available

module with the provided ID.

Example:

int idx = -1;
if ((idx = lpmGetModuleIndex(lpm_state, MODULE_ID, 0, 0)) == -1)
{

// Error handling
}
// Working with the idx

Eyedea Recogniton, s.r.o.



SDK Application Interface 32

lpmGetModuleIndexByName

Gets the LPM module index (handle) from the module name.

Specification:

int lpmGetModuleIndexByName(LPMState lpm_state, const char *module_name);

Input:

• lpm_state

The LPM state created by the lpmInit() function.

• module_name

Name of the given module. See lpmGetModuleInfo().

Returns:

• -1 – Error during computation occurred.

• other – Module index.

Description:

The function lpmGetModuleIndexByName() returns the LPMmodule index (handle) from themodule name.

Module indices can vary with each program execution because they depend on the search order of the

given module directory.

Example:

int idx = -1;
if ((idx = lpmGetModuleIndexByName(lpm_state, "001-frontal.adr-adr-v7.0")) == -1)
{

// Error handling
}
// Working with the idx

lpmGetModuleInfo

Retrieves information about the LPM module.

Specification:

LpmModuleInfo *lpmGetModuleInfo(LPMState lpm_state, int module_index);

Input:

• lpm_state

The LPM state created by the lpmInit() function.

• module_index

Index of the LPM module to use. Note that module index and module ID are two different things.

Returns:

• NULL – Error during computation occurred. Call lpmGetLastError() to get error code.

• other – LpmModuleInfo structure with all information about the module.

Description:

The function lpmGetModuleInfo() returns all information about the module with the desired index.

Eyedea Recogniton, s.r.o.



SDK Application Interface 33

Example:

int idx = 1;
LpmModuleInfo *lmi = lpmGetModuleInfo(lpm_state, idx);
// Each module has its own ID and this is a way how to get it.
printf(" Module ID: %d\n", lmi->id);
// Another module properties ...
printf(" Module name: %s\n", lmi->name);
printf(" Module path: %s\n", lmi->path);
printf(" Module date: %s\n", lmi->date);
printf(" Module version: %d.%d\n\n", lmi->version, lmi->subversion);

4.3.4 Error logging functions
This part defines the API functions which are designed for error logging and easier debugging. The lp-

mGetLastError() function returns the error code of the last error. These functions are defined in the lpm.h

file.

lpmGetLastError

Gets the code of the last occurred error.

Specification:

int lpmGetLastError(void);

Returns:

• The ID of the last occurred error.

Description:

The function lpmGetLastError() returns the error code of the last error.

Example:

int err_code = lpmGetLastError();

Eyedea Recogniton, s.r.o.



Examples 34

5 Examples
This chapter describes the example which is contained in the SDK package. The example is used to demon-

strate the functionality of the SDK. The source code is included in the package and is described in detail.

5.1 LPM SDK Example
The LPM SDK package contains an example which is used to demonstrate the basic functionality of the LPM

SDK on several input images. The example detects license/ADR plates on multiple images and runs OCR on

these detections. It also demonstrates how to load LPM modules and get information about the available

modules. This chapter describes in detail the example together with references to important parts of this

document.

The example is in the folder [LPM_SDK]/examples/example-anpr-implink/. The folder contains all source

code and files needed for building the example. In Windows packages, a Visual Studio 2019 project is

included; in Linux packages, a Makefile is included.

5.1.1 Initialization of the LPM engine
The first thing to do is initializing the LPM engine using the lpmInit() function. The parameters of this

function are the directory where the LPM modules are located (e. g. ../../modules-v7/x64 for default

package directory structure on Windows x64 system), and a LpmState pointer.

#define MODULES_DIR "../../modules-v7/x64"
LpmState lpm_state; // A void pointer to the lpm state variable
int ret_code;
if ((ret_code = lpmInit(MODULES_DIR, &lpm_state)) != 0)
{

// Error handling
}
printf("LPM v%u.%u initialized.\n\n", (unsigned char)(lpmVersion() >> CHAR_BIT),

(unsigned char)(lpmVersion()));

After successful initialization of the engine, modules can be loaded, and the engine can be used.

5.1.2 Listing of available LPM modules
To start working with LPM modules, their indexes are needed as handles. Indexes are numbers from zero

to the number of available modules -1. Code bellow illustrates how to get the number of modules and list

information about them:

LpmModuleInfo *module_info = NULL; // A pointer to the module info structure
// Get the number of available lpm modules and print some basic information about them
int num_available_modules = lpmGetNumAvlbModules(lpm_state);

printf("Listing %d modules:\n"}, num_available_modules);
for (int i = 0; i < num_available_modules; i++)
{

module_info = lpmGetModuleInfo(lpm_state, i);

// Each module has its own ID and this is a way how to get it
printf("  Module ID     : %d\n", module_info->id);
// Module name, version, date and others are available as defined in LpmModuleInfo
printf("  Module name   : %s\n", module_info->name);
printf("  Module path   : %s\n", module_info->path);
printf("  Module date   : %s\n", module_info->date);
printf("  Module version: %d.%d\n\n", module_info->version, module_info->subversion);

}

Eyedea Recogniton, s.r.o.



Examples 35

5.1.3 Writing camera view parameters
Another part of the example concerns writing camera view parameters (image resolution, aspect ratio, …)

to a file which can be then loaded and used to supply these parameters when loading modules. See the

LpmCameraViewParams structure for more information about these parameters.

LpmCameraViewParams camera_view_params;
camera_view_params.view_type = LPM_VIEW_FRONTAL;
camera_view_params.camera_aspect = 1.f;
camera_view_params.min_horizontal_resolution = 135;
camera_view_params.max_horizontal_resolution = 260;

lpmWriteViewConfig(VIEW_CONFIG_FILENAME , camera_view_params);

5.1.4 Loading camera view parameters
Camera view parameters can be loaded from a config file in the following way:

// Load the camera view parameters from config file
LpmCameraViewParams camera_view_params;
if (lpmLoadViewConfig(VIEW_CONFIG_FILENAME , &camera_view_params) != 0)
{

// Error handling
}

IMPORTANT: camera view parameters do NOT apply when using the newGPU capable detectionmod-

ules which work in a different way than the previous modules.

5.1.5 Getting LPM module index
To be able to load the appropriate module, the index of the module must be known. If the module id is

known, then the easiest way to get this index is to use the function lpmGetModuleIndex(). If the version

and subversion of the module is specified, then the function looks for the specified version; otherwise the

function searches for all versions of the module with the specified ID and returns the latest version.

// Check if a module with a given MODULE_ID is available and if so then return its index
(handle).

int idx; // Module index (handle)
if ((idx = lpmGetModuleIndex(lpm_state, MODULE_ID, 0, 0)) == -1)
{

// Error handling , module not found
}

5.1.6 Setting module configuration parameters
A module can be initialized with special configuration parameters.

For versions prior to 7.3 you can set the parameters to allow GPU computation or pass in a NULL pointer

to use default values from the configuration file. We will set them to select computation on CPU:

LpmModuleConfig lpm_module_config;
lpm_module_config.compute_on_gpu = 0;

Eyedea Recogniton, s.r.o.



Examples 36

For version 7.3 and higher settings are provided by an extension structure:

LpmModuleConfig_extension1 lpm_module_config_extension1;
memset(&lpm_module_config_extension1 , 0, sizeof(lpm_module_config_extension1));
lpm_module_config_extension1.lpm_config_filename = "config.ini";
lpm_module_config_extension1.ocr_compute_on_gpu = 1;
lpm_module_config_extension1.det_config_filename = "config-det.ini";
lpm_module_config_extension1.det_compute_on_gpu = 1;
lpm_module_config.extras = &lpm_module_config_extension1;

5.1.7 Loading LPM module
When the index of the desired module is known, the module can be loaded using the function lpmLoad-

Module(). The third parameter containing camera view parameters is optional, NULL value can be used to

use default parameters from config file.

// Now load the module.
if (lpmLoadModule(lpm_state, idx, &camera_view_params, &lpm_module_config) != 0)
{

// Error handling
}

One or more LPM modules can be loaded at one time simply by calling lpmLoadModule() multiple times.

Module used by SDK functions is then specified by module_index parameter.

5.1.8 Input image loading
Before a LPM module can be used, image data must be loaded and decoded to a supported image format

The example uses the Eyedea Recognition’s custom image structure ERImage to manipulate the images.

The image is loaded to a ERImage structure using the erImageRead() function. Formore information about

image structure and image manipulation functions used by LPM SDK see chapter ERImage.

// Create the ERImage
ERImage image;
// Read the input image
int image_read_code = erImageRead(&image, IMAGE_FILENAME);
// Check whether image was loaded
if (image_read_code != 0)
{

// Handle errors
}

Eyedea Recogniton, s.r.o.



Examples 37

5.1.9 License/ADR plates detection
Code bellow illustrate how to run a license/ADRplates detectionprocedure onmultiple files. Image files are

loaded into ERImage structures and a bounding box covering the whole image is supplied to the detection

function by a LpmBoundingBox structure. At the end, the structure with the detection result is deleted

using the lpmFreeDetResult() function.

#define NUM_IMG 3
const char TestImageList[NUM_IMG][_MAX_PATH] = { "../images/1.jpg", "../images/2.jpg",

"../images/3.jpg"}; // images to process

LpmDetResult *det_result = NULL; // A pointer to the detection result structure

for (int i = 0; i < NUM_IMG; i++) // Cycle through the images
{

ERImage er_image;
if (erImageRead(&er_image, TestImageList[i]) != 0)
{

// Error handling
}

// Specify an area of the input image where detection will be performed
LpmBoundingBox bb;
bb.top_left_col = 0;
bb.top_left_row = 0;
bb.bot_right_col = er_image.width - 1;
bb.bot_right_row = er_image.height - 1;

// Run LP detection
if ((det_result = lpmRunDet(lpm_state, idx, er_image, &bb)) == NULL)
{

// Error handling
}

// Print information about the detection
#ifdef LPM_EXTENSIONS_v7_3

if (det_result->extras != NULL)
{

LpmDetection_extension1 &detection_extension1 = det_result->extras->detections[j];
printf(" - Detection %d, confidence %.2f, truncated %d, occlusion %.2f, cluster_id 

%d:\n",
j + 1,
detection.confidence,
detection_extension1.truncated,
detection_extension1.occlusion,
detection_extension1.cluster_id);

}
else
{

#endif
printf(" - Detection %d, confidence %.2f:\n", j + 1, detection.confidence);

#ifdef LPM_EXTENSIONS_v7_3
}

#endif

Eyedea Recogniton, s.r.o.



Examples 38

5.1.10 Printing detection information
This code illustrates how to print detection information. In version 7.3 and higher, additional information

is stored in an extension structure, and printing of this information is enabled by a preprocessor directive

and by checking for NULL.

// ...
// Print information about the detection
#ifdef LPM_EXTENSIONS_v7_3
if (det_result->extras != NULL)
{

LpmDetection_extension1 &detection_extension1 = det_result->extras->detections[j];
printf(" - Detection %d, confidence %.2f, truncated %d, occlusion %.2f, cluster_id %d:\n",

j + 1,
detection.confidence,
detection_extension1.truncated,
detection_extension1.occlusion,
detection_extension1.cluster_id);

}
else
{
#endif

printf(" - Detection %d, confidence %.2f:\n", j + 1, detection.confidence);
#ifdef LPM_EXTENSIONS_v7_3
}
#endif

// Do OCR or other stuff with detections
// ...

Eyedea Recogniton, s.r.o.



Examples 39

5.1.11 License/ADR plate OCR
When license/ADR plates are detected, OCR is called on every plate detection. More hypotheses can be

returned for each plate, together with their confidences. Bounding boxes of plate detections are supplied

directly to lpmRunOcr() function along with the original image. In version 7.3 and higher, detection results

contain an extension structure which holds additional information. At the end, the structure with the OCR

result is deleted using the lpmFreeOcrResult() function.

// Running OCR on each LP detection
LpmOcrResult *ocr_result = NULL; // A pointer to the OCR result structure
for (int j = 0; j < det_result->num_detections; j++)
{

printf(" - Detection %d:\n", j + 1);
if ((ocr_result = lpmRunOcr(lpm_state, idx, er_image,

&(det_result->detections[j].position), det_result->detections[j].label)) != NULL)
{

// We take the first OCR hypothesis.
LpmOcrHypothesis &hypothesis = ocr_result->hypotheses[0];
printf("    - Ilpc: %s, confidence: 

%.2f\n",hypothesis.plate_type,hypothesis.confidence);
printf("    - dimensions: w*h=%d*%d[mm], confidence: %.2f\n",

hypothesis.lp_dimensions.physical_width,
hypothesis.lp_dimensions.physical_height,
hypothesis.lp_dimensions_confidence);

// Print all the lines contained in the hypothesis
for (unsigned int k = 0; k < hypothesis.num_lines; k++)
{

// Note that the prediction can contain non-ASCII characters
printf("    - line %d, ASCII: '", k + 1);
for (unsigned int l = 0; l < hypothesis.text_lines[k].length; l++)
{

printf("%c", hypothesis.text_lines[k].characters[l]);
}
printf("', Unicode: ");
for (unsigned int l = 0; l < hypothesis.text_lines[k].length; l++)
{

printf("0x%X ", hypothesis.text_lines[k].characters[l]);
}
printf(", length %d, confidence %.2f\n", hypothesis.text_lines[k].length,

hypothesis.text_lines[k].line_confidence);
}
// Empty LP/ADR table can be recognized using predicted number of lines
if (hypothesis.num_lines == 0)
{

printf("       - empty\n");
}
printf("\n");

}
lpmFreeOcrResult(lpm_state, ocr_result);

}

5.1.12 Cleaning up
At the end, when you are doneworking with the LPM SDK instance(for example at the end of the program),

it must be deleted together with all the loadedmodules and camera view parameters structures. To delete

these, use the API functions lpmFreeModule() and lpmFree(), which are designed for this purpose.

// Finish work with the current module}
lpmFreeModule(lpm_state, idx);

// Free the LPM state}
lpmFree(&lpm_state);

Eyedea Recogniton, s.r.o.



Modules configuration files 40

6 Modules configuration files
This chapter describes configuration files used by the SDK modules for some of the configuration. The SDK

uses multiple configuration files, this chapter will cover two main configuration files.

Configuration files use an INI style key-value pair format, and the files are divided into multiple sections.

Each section starts with a name enclosed in square brackets, and can contain multiple key-value pairs,

each on a new line. Key-value pairs are in the parameter_name=parameter_value format. Values can

be numbers, strings enclosed in quotation marks or True or False for Boolean values. Comments can be

written after the # sign.

The first part of this chapter describes the General configuration file config.ini, and the second part de-

scribes the Detector configuration file config-det.ini. In some configurations, LPMmay also use other con-

figuration files, which are not described in this chapter.

Some settings can be set inmultipleways - either via a configuration file, or by passing a configuration struc-

ture to an SDK function. Values in the detector configuration file config-det.ini have the lowest priority and

are overwritten by values in the general configuration file config.ini. Values passed to the module initial-

ization function lpmLoadModule() in LpmModuleConfig and LpmModuleConfig_extension1 structures have

the highest priority and will overwrite the settings in configuration files.

6.1 General configuration file config.ini
This is the main configuration file, and values from this file will overwrite values from the detector config

file config-det.ini. Some of these values can be overwritten by LpmModuleConfig and LpmModuleCon-

fig_extension1 structures passed to lpmLoadModule(). config-det.ini contains the following sections:

6.1.1 EYEDENTIFY PARAMETERS
These are the parameters used prior to version 7.3, which are now deprecated. In version 7.3 and higher,

please use OCR PARAMETERS and DET PARAMETERS instead.

This section contains the following parameters:

• edf_compute_on_gpu

Boolean (True/False) value whether to use GPU for detection and OCR.

• edf_gpu_device_id

GPU id of the device to be used for computation if GPU computation is enabled.

Example:

[EYEDENTIFY PARAMETERS]
edf_compute_on_gpu = False
edf_gpu_device_id = 0

6.1.2 OCR PARAMETERS
Parameters for the OCR part of the SDK:

• ocr_compute_on_gpu

Boolean (True/False) value whether to use GPU for OCR.

• ocr_gpu_device_id

GPU id of device to be used for OCR computation if OCR computation on GPU is enabled.

Eyedea Recogniton, s.r.o.



Modules configuration files 41

• ocr_num_threads

Number of threads for OCR computation. The value 0, used by default, corresponds to 90% of your

logical processors. Be careful when setting high values, because setting this value to or above the

number of your logical processors may block all other processes, including the system processes

used by the SDK.

• disable_ocr

Setting this to True will disable OCR computation. Trying to run the OCR function will return NULL

and a warning will be printed to standard output.

Example:

[OCR PARAMETERS]
ocr_compute_on_gpu = False
ocr_gpu_device_id = 0
ocr_num_threads = 0
disable_ocr = False

6.1.3 OCR MODELS
This section deals with setting which OCR model is to be used, depending on the label of each detection

of the detection output.

• model[n]

Definition of labels for each model file. For each model, the definition should look like model[num-

ber]=model_dat_file,label1,label2,…wheremodel_dat_file is the filename of themodel dat file, and

label1, label2,… are the detector label numbers for which this OCR model will be used. The model

with no attached labels acts as the default model, and is used for detection labels that are not ex-

plicitly attached to any model declared in this section. The models numbering [n] in model[n] is not

important. Labels are defined in structure LpmDetectionLabel in file lpm_type.h

Example:

[OCR MODELS]
model1 = CNN_ANPRTF2LITE_EU_GRAY_96x24_NONE_LIN_EXP07_enc.dat
model2 = CNN_ANPRTF2LITE_ML_GRAY_64x40_NONE_LIN_EXP05_enc.dat,1002,1102,2000,2001,2002,2100

6.1.4 DET PARAMETERS
This section contains parameters for the detector:

• det_config_filename

Filename of the detector configuration file relative to the directory of the general configuration file.

Default is config-det.ini.

• det_compute_on_gpu

Boolean (True/False) value whether to run the detector on GPU.

• det_gpu_device_id

GPU id of the device to be used for detection computation if detection computation on GPU is en-

abled.

• det_num_threads

Number of threads for detection computation. The value 0, used by default, corresponds to 90% of

your logical processors. Be careful when setting high values, because setting this value to or above

the number of your logical processors may block all other processes, including the system processes

used by the SDK.

• disable_det

Eyedea Recogniton, s.r.o.



Modules configuration files 42

Setting this to True will disable the detector. Trying to run the detector function lpmRunDet() will

return NULL and a warning will be printed to standard output.

Example:

[DET PARAMETERS]
det_config_filename = "config-det.ini"
det_compute_on_gpu = False
det_gpu_device_id = 0
det_num_threads = 0
disable_det = False

6.1.5 LPIMAGE CROP PARAMETERS
This section contains parameters for generating image crops from detection outputs:

• lp_crop_enabled

This Boolean value controls whether an image crop should be generated from detections. If set to

True, an image crop will be generated and accessible via LpmDetection.image. Set to False for speed

optimization if you do not need image crops for your own purposes.

• lp_img_width

Width of the cropped image in pixels. Must be greater than zero.

• lp_img_height

Height of cropped image in pixels. Set to 0 for automatic calculation of height according to crop

width and detection aspect ratio.

Example:

[LPIMAGE CROP PARAMETERS]
lp_crop_enabled = True
lp_img_width = 256
lp_img_height = 0

6.2 Detector configuration file config-det.ini
This is the configuration file of the detector. Most of the values in this file are primarily for internal use

and are not to be modified. Please be careful when changing the values in this file. The file contains the

following sections:

6.2.1 MODULE
This section stores data about the module and some of its settings:

• type

Type of the detector module. Can specify multiple types, in which case if the initialization of the first

type fails, the SDK will try to initialize the next module. This setting can be used to try to initialize

the GPU version, and if this fails (for example if some GPU libraries are missing), the CPU version is

initialized instead.

• name

Name of the module used internally.

• group

Name of preprocessed image used internally.

Eyedea Recogniton, s.r.o.



Modules configuration files 43

• num_threads

Number of threads for detection computation. The value 0, used by default, corresponds to 90% of

your logical processors. Be careful when setting high values, because setting this value to or above

the number of your logical processors may block all other processes, including the system processes

used by the SDK.

• gpu_device_id

GPU id of the device to use for detection computation if detection computation on GPU is enabled.

• use_gpu

Boolean (True/False) value whether to use GPU for detection computation.

Example:

[MODULE]
type = "Tf2Lite-GPU,Tf2Lite"
name = "Tf2lite-CNN"
group = "Tf2lite-lp-eu-rgb-608x416"
num_threads = 0
gpu_device_id = 0
use_gpu = 0

6.2.2 NMS PARAMETERS
These are parameters for non-maximum suppression which is used to filter out duplicated detections:

• overlap

Minimal overlap to apply NMS.

• nms

Number defining the type of non-maximum suppression to use:

0 - no-nms, 1 - simple nms, 2 - nms+, 3 - nms+ suppress-nested

• labels

Number defining how NMS deals with detections with different labels:

0 – ignore labels, 1 – separate NMS for each label.

• threshold

Final threshold on the score.

Example:

[NMS PARAMETERS]
overlap = 0.5
nms = 1
labels = 0
threshold = 0.2

6.2.3 DETECTION MODELS
This section contains parameters defining model .dat files:

• model_filename

Path of the model .dat file relative to the detector config.

Example:

[DETECTION MODELS]
model_filename="models/CNN_DETECTTF2LITE_LP_EU_BGR_608x416_NONE_NONE_EXP22_enc.dat"

Eyedea Recogniton, s.r.o.



Modules configuration files 44

6.2.4 ROI
This section contains parameters which can set the region of interest for the detector. The detector will

only run on the region of interest rectangle defined by:

• x

X position of the top left corner of the region of interest.

• y

Y position of the top left corner of the region of interest.

• width

Width of the region of interest in pixels.

• height

Height of the region of interest in pixels.

Example:

[LPIMAGE CROP PARAMETERS]
x = 200
y = 200
width = 1200
height= 500

6.2.5 PADDING
This section contains parameters used to add padding to the input image. This can be used for some types

of detectors to allow detection at the edges of images:

• padding

Four numbers enclosed in square brackets specifying the padding size on each side of the image in

the order of left, top, right, bottom.

Example:

[LPIMAGE CROP PARAMETERS]
padding = "[100, 100, 0, 0]"

Eyedea Recogniton, s.r.o.



ERImage Application Interface 45

7 ERImage Application Interface
This part describes ERImage library used for image data storage and manipulation by LPM SDK. The Image

Format section describes how image data is stored in the memory from a theoretical point of view, and

the remaining parts cover the application interface used for image manipulation using the data structure

ERImage. Description of all available Enumerators, Structures and Functions is included.

7.1 Image Format
Digital image data can be persisted in many different forms. Since it is the main input of the processing,

it is very important to understand the form used for image storage and manipulation. Currently five color

models are supported in the ERImage image structure. The first is the BGR color model, the second is the

Gray color model, the third is the YCbCr I420 color model, the fourth is the BGRA color model, and the fifth

is the YCbCr NV12 color model.

7.1.1 BGR
Three-channel model, which is derived from RGB, and is sup-

ported by the ERImage is BGR (B – blue, G – green, R – red). BGR

(B – blue, G – green, R – red) is a three-channel model supported

by ERImage; it is derived from RGB.

The model stores image using three values per pixel, where the first value is the blue component, the

second value is the green component and the third is the red component. An image is saved row by row

in a 1D array. The following formulas show how to access the pixel color components B, G and R in the

1D array data of the image with resolution width × height on coordinates (x, y). Coordinates x, y and data

array indices are 0-based.

B(x,y) = data(3 ∗ (width ∗ y + x) + 0) B component at (x, y) coordinates

G(x,y) = data(3 ∗ (width ∗ y + x) + 1) G component at (x, y) coordinates

R(x,y) = data(3 ∗ (width ∗ y + x) + 2) R component at (x, y) coordinates

7.1.2 Gray
The one-channel model Gray is used for storing grayscale images, which are composed

of luminance values (Y - luminance). The model stores images using one value per pixel,

where the value is the luminance component. The image is saved row by row in a 1D

array. The following formula shows how to access the pixel luminance component Y

in the 1D array data of an image with resolution width × height at coordinates (x, y).

Coordinates x, y and data array indices are 0-based.

Y (x,y) = data(width ∗ y + x) Y component at (x, y) coordinates

Eyedea Recogniton, s.r.o.



ERImage Application Interface 46

7.1.3 YCbCr I420

Y00 Y01

Y06 Y07

Y02 Y03

Y08 Y09

Y04 Y05

Y10 Y11

Y12 Y13

Y18 Y19

Y14 Y15

Y20 Y21

Y16 Y17

Y22 Y23

CB0 CB1

CR0 CR1

CB2 CB3

CR2 CR3

CB4 CB5

CR4 CR5

The three-plane model YCbCr I420 is used for storing color image,

where the first plane contains luminance (Y component, image bright-

ness), the second plane contains the blue-difference chroma compo-

nent (Cb) and the third plane contains the red-difference chroma com-

ponent (Cr). Cb and Cr planes have half the resolution of the Y image

plane. Four neighboring Y values belongs to one Cb and one Cr value.

The image is saved per plane, where each plane is saved row by row in

a 1D array. The following formulas show how to access the pixel color

components Y, Cb and Cr in the 1D array data of an image with reso-

lution width × height at coordinates (x, y). Coordinates x, y and data

array indices are 0-based. All divisions in the formulas are integer

divisions.

Y (x,y) = data(width ∗ y + x) Y component at (x, y) coordinates

|Y | = width ∗ height Size of the Y image plane

Cb(x,y) = data(|Y | + y

2 ∗ width

2 + x

2 ) Cb component at (x, y) coordinates

|Cb| = |Cr| = width ∗ height

4 Size of the Cb and Cr image plane

Cr(x,y) = data(|Y | + |Cb| + y

2 ∗ width

2 + x

2 ) Cr component at (x, y) coordinate

7.1.4 BGRA
BGRA (B – blue, G – green, R – red, A – alpha) is

a four-channel model supported by the ERImage;

it is derived from RGBA. The model stores images

using four values per pixel, where the first value is

the blue component, the second value is the green

component, the third is the red component and the fourth value is the alpha component (transparency).

An image is saved row by row in a 1D array. Following formulas show how to access the pixel color com-

ponents B, G, R and A in the 1D array data of an image with resolutionwidth × height at coordinates (x, y).

Coordinates x, y and data array indices are 0-based.

B(x,y) = data(4 ∗ (width ∗ y + x) + 0) B component at (x, y) coordinates

G(x,y) = data(4 ∗ (width ∗ y + x) + 1) G component at (x, y) coordinates

R(x,y) = data(4 ∗ (width ∗ y + x) + 2) R component at (x, y) coordinates

A(x,y) = data(4 ∗ (width ∗ y + x) + 3) A component at (x, y) coordinates

Eyedea Recogniton, s.r.o.



ERImage Application Interface 47

7.1.5 YCbCr NV12

Y00 Y01

Y06 Y07

Y02 Y03

Y08 Y09

Y04 Y05

Y10 Y11

Y12 Y13

Y18 Y19

Y14 Y15

Y20 Y21

Y16 Y17

Y22 Y23

CB0 CR0

CB3 CR3

CB1 CR1

CB4 CR4

CB2 CR2

CB5 CR5

The two-plane model YCbCr NV12 is used for storing color im-

ages, where the first plane contains luminance (Y component, im-

age brightness) and the second plane contains interleaved blue-

difference chroma components (Cb) and red-difference chroma com-

ponents (Cr). The Cb and Cr planes have half the height and the same

width as the Y image plane (because there are two components).

Four neighboring Y values belongs to one Cb and one Cr value.

The image is saved per plane, where each plane is saved row by row

in a 1D array. The following formulas show how to access the pixel

color components Y, Cb and Cr in the 1D array data of the image with

resolution width × height at coordinates (x, y). Coordinates x, y and

data array indices are 0-based. All divisions in the formulas are in-

teger divisions.

Y (x,y) = data(width ∗ y + x) Y component at (x, y) coordinates

|Y | = width ∗ height Size of the Y image plane

Cb(x,y) = data(|Y | + y

2 ∗ width + x

2 ) Cb component at (x, y) coordinates

Cr(x,y) = data(|Y | + y

2 ∗ width + x

2 + 1) Cr component at (x, y) coordinate

|CbCr| = width ∗ height

2 Size of the CbCr image plane

7.2 Application Interface

7.2.1 Enumerators
This part defines the API enumerators which are related to the ERImage structure:

ERImageColorModel

ERImageColorModel is used to specify how the color channel values are saved in the image. More infor-

mation about the supported color models is in the section Image Format.

• ER_IMAGE_COLORMODEL_UNK = 0

Default value - Unknown color model.

• ER_IMAGE_COLORMODEL_GRAY = 1

One-channel grayscale color model. Image luminance values are saved row by row.

• ER_IMAGE_COLORMODEL_BGR = 2

Three-channel BGR color model. Three values per pixel, stored row by row.

• ER_IMAGE_COLORMODEL_YCBCR420 = 3

Three-plane YCbCr I420 colormodel. Luminance plane and two chroma planes are stored separately,

each row by row.

• ER_IMAGE_COLORMODEL_BGRA = 4

Four-channel BGRA color model. Four values per pixel, stored row by row.

Eyedea Recogniton, s.r.o.



ERImage Application Interface 48

• ER_IMAGE_COLORMODEL_YCBCRNV12 = 5

Two-plane YCbCr NV12 color model. Luminance plane and interleaved chroma plane are stored sep-

arately each row by row.

ERImageDataType

ERImageDataType specifies the data type used for storing values of the image.

• ER_IMAGE_DATATYPE_UNK = 0

Default value – unknown data type.

• ER_IMAGE_DATATYPE_UCHAR = 1

All image values are saved as unsigned char.

• ER_IMAGE_DATATYPE_FLOAT = 2

All image values are saved as float.

7.2.2 Structures
This part defines the API structure ERImage used for digital image data manipulation:

ERImage

typedef struct {
ERImageColorModel color_model;
ERImageDataType data_type;
unsigned int width;
unsigned int height;
unsigned int num_channels;
unsigned int depth;
unsigned int step;
unsigned int size;
unsigned int data_size;
unsigned char* data;
unsigned char** row_data;
unsigned char data_allocated;

} ERImage;

ERImage represents the digital image data in a special structure designed to work with the LPM SDK.

The structure contains the color model and the data type in the ERImageColorModel, and the ERImage-

DataType enumerators, together with the parameters defining the size of the image and the underlying

data. Image data is saved in the data field row by row as a contiguous 1D array. For more information see

the section Image Format.

• color_model

Image data color model represented by the enumerator ERImageColorModel.

• data_type

Image date type represented by the enumerator ERImageDataType.

• width

Width of the image in pixels.

• height

Height of the image in pixels.

• num_channels

Number of image channels. Zero for YCbCr color models.

• depth

Size of one image pixel in bytes. Zero for YCbCr color models.

• step

Number of bytes between each two beginnings of the row in the data array.

Eyedea Recogniton, s.r.o.



ERImage Application Interface 49

• size

Size of the image in bytes.

• data_size

Size of the allocated data in the structure.

• data

Array containing the image data.

• Row_data

Array containing pointers to the data array. Each element points to the beginning of the specific

image row in the data array.

• data_allocated

Value containing the flag whether the data field was allocated within the structure or on the user’s

side. (0 – allocated by user, 1 – allocated within the structure)

7.2.3 Functions
This part defines the API functions which are designed to work with the ERImage structure:

• Allocation

erImageAllocate, erImageAllocateBlank, erImageAllocateAndWrap and erImageCopy

• Properties

erImageGetDataTypeSize, erImageGetColorModelNumChannels, erImageGetPixelDepth and

erVersion

• IO Operations

erImageRead and erImageWrite

• Freeing

erImageFree

These functions are defined in the er_image.h file.

erImageAllocate

Allocates an ERImage structure.

Specification:

int erImageAllocate(ERImage* image, unsigned int width, unsigned int height,
ERImageColorModel color_model, ERImageDataType data_type);

Input:

• image

Pointer to the ERImage structure instance to allocate.

• width

Width of the image to allocate.

• height

Height of the image to allocate.

• color_model

Color model of the image to allocate (see ERImageColorModel).

• data_type

Data type of the image to allocate (see ERImageDataType).

Returns:

• 0 – Image successfully allocated.

• other – Error during image allocation.

Eyedea Recogniton, s.r.o.



ERImage Application Interface 50

Description:

The function erImageAllocate() is used for ERImage structure data allocation. The input of the function is

the pointer to the ERImage structure instance, the width and height of the image to allocate, and the color

model and the data type specification.

Example:

ERImage* image = new ERImage();
// Allocate grayscale (1 channel) image with resolution 800x600 and 1 byte per channel
int res = erImageAllocate(image, 800, 600, ER_IMAGE_COLORMODEL_GRAY , ER_IMAGE_DATATYPE_UCHAR);

erImageAllocateBlank

Allocates an ERImage structure without allocating the internal data arrays.

Specification:

int erImageAllocateBlank(ERImage* image, unsigned int width, unsigned int height,
ERImageColorModel color_model, ERImageDataType data_type);

Input:

• image

Pointer to the ERImage structure instance to allocate.

• width

Width of the image to allocate.

• height

Height of the image to allocate.

• color_model

Color model of the image to allocate (see ERImageColorModel).

• data_type

Data type of the image to allocate (see ERImageDataType).

Returns:

• 0 – Image successfully allocated.

• other – Error during image allocation.

Description:

The function erImageAllocateBlank() is used for ERImage structure properties allocation, but without the

internal data array allocation. The input of the function is the pointer to the ERImage structure instance,

the width and height of the image to allocate, and the color model and the data type specification.

Example:

ERImage* image = new ERImage();
// Allocate blank BGR (3 channel) image with resolution 640x480 and 1 float per channel
int res = erImageAllocateBlank(image,640,480, ER_IMAGE_COLORMODEL_BGR , ER_IMAGE_DATATYPE_FLOAT);
// image->data == NULL, image->row_data == NULL and image->data_size == 0

IMPORTANT: Only the fields with image properties are allocated. Image data field is NULL, row_data

is NULL and field data_size is 0 after a successful function call.

Eyedea Recogniton, s.r.o.



ERImage Application Interface 51

erImageAllocateAndWrap

Allocates an ERImage structure and wraps it over the supplied image data.

Specification:

int erImageAllocateAndWrap(ERImage* image, unsigned int width, unsigned int height,
ERImageColorModel color_model, ERImageDataType data_type,
unsigned char* data, unsigned int step);

Input:

• image

Pointer to the ERImage structure instance to allocate.

• width

Width of the image to allocate.

• height

Height of the image to allocate.

• color_model

Color model of the image to allocate (see ERImageColorModel).

• data_type

Data type of the image to allocate (see ERImageDataType).

• data

Image data to wrap.

• step

Definition of the input data image row step. (length of one image row in bytes in the input data)

Returns:

• 0 – Image successfully allocated.

• other – Error during image allocation.

Description:

The function erImageAllocateAndWrap() is used for ERImage structure data allocation andwrapping of the

supplied image data. The input of the function is the pointer to the ERImage structure instance, the width

and height of the image to allocate, the color model and the data type specification, the pointer to the

image data to wrap, and the step value which defines the size of the row in bytes.

Example:

unsigned char* data; // Image data to wrap
ERImage* image = new ERImage();
// Allocate grayscale (1 channel) image with resolution 800x600 and 1 byte per channel
// and wrap it over the image data supplied in the unsigned char* data array.
int res = erImageAllocateAndWrap(image, 800, 600, ER_IMAGE_COLORMODEL_GRAY ,

ER_IMAGE_DATATYPE_UCHAR , data, 800);

erImageCopy

Performs a deep copy of the ERImage structure instance.

Specification:

int erImageCopy(const ERImage* image, ERImage* image_copy);

Input:

• image

Pointer to the ERImage structure instance to copy.

• image_copy

Pointer to the ERImage structure to copy the data into.

Eyedea Recogniton, s.r.o.



ERImage Application Interface 52

Returns:

• 0 – Image successfully copied.

• other – Error during image copying.

Description:

The function erImageCopy() is used for ERImage data copying to another instance of an ERImage structure.

The input is the pointer to the ERImage structure instance to copy and the output is the pointer to the

ERImage structure instance to copy the data into.

IMPORTANT: The allocation of image_copy is done within the function before the data copying.

Example:

ERImage* image; // Image with source data
ERImage* image_copy = new ERImage(); // Destination image to copy the data into
// Deep copy of the image
int res = erImageCopy(image, image_copy);

erImageGetDataTypeSize

Returns the size of the specific ERImageDataType in bytes.

Specification:

unsigned int erImageGetDataTypeSize(ERImageDataType data_type);

Input:

• data_type

ERImageDataType to get the size of.

Returns:

• data type size – Size of one channel image element in bytes.

• 0 – Unknown ERImageDataType used.

Description:

The function erImageGetDataTypeSize() is used to get the size in bytes of the specific ERImageDataType

when used for image allocation. The input is the ERImageDataType value. The output is the value which

represents the number of bytes needed for storing one channel value of one pixel when a specific ERIm-

ageDataType is used.

Example:

unsigned int sizeUC = erImageGetDataTypeSize(ER_IMAGE_DATATYPE_UCHAR);
// sizeUC == sizeof(unsigned char)

unsigned int sizeF = erImageGetDataTypeSize(ER_IMAGE_DATATYPE_FLOAT);
// sizeF == sizeof(float)

erImageGetColorModelNumChannels

Returns the number of channels of the provided ERImageColorModel value.

Specification:

unsigned int erImageGetColorModelNumChannels(ERImageColorModel color_model);

Input:

• color_model

ERImageColorModel to get the number of channels.

Eyedea Recogniton, s.r.o.



ERImage Application Interface 53

Returns:

• number of channels – Number of channels of the supplied color model.

• 0 – Unknown or YCbCr ERImageColorModel used.

Description:

The function erImageGetColorModelNumChannels() is used to get the number of channels of the specific

ERImageColorModel. The input is the ERImageColorModel value. The output is the valuewhich represents

the number color model channels used when storing the image with specific ERImageColorModel.

IMPORTANT: For the ER_IMAGE_COLORMODEL_YCBCR* color model, zero is returned.

Example:

unsigned int numChannelsGRAY = erImageGetColorModelNumChannels}(ER_IMAGE_COLORMODEL_GRAY);
// numChannelsGRAY == 1

unsigned int numChannelsBGR = erImageGetColorModelNumChannels}(ER_IMAGE_COLORMODEL_BGR);
// numChannelsBGR == 3

unsigned int numPlanesYCBCR420 = erImageGetColorModelNumChannels}(ER_IMAGE_COLORMODEL_YCBCR420);
// numPlanesYCBCR420 == 0

erImageGetPixelDepth

Returns the size of a pixel in bytes for the supplied ERImageColorModel and ERImageDataType.

Specification:

unsigned int erImageGetPixelDepth(ERImageColorModel color_model, ERImageDataType data_type);

Input:

• color_model

Input ERImageColorModel for pixel depth computation.

• data_type

Input ERImageDataType for pixel depth computation.

Returns:

• depth of the pixel – Number of bytes needed to store one pixel using the specified color model

and data type.

• 0 – Unknown ERImageColorModel and/or ERImageDataType used.

Description:

The function erImageGetPixelDepth() is used to get the size of one pixel in bytes for the combination of

ERImageColorModel and ERImageDataType. The input is the ERImageColorModel and ERImageDataType

values. The output is the value which represents the size of one pixel in bytes when storing an image with

the supplied ERImageColorModel and ERImageDataType.

IMPORTANT: For the ER_IMAGE_COLORMODEL_YCBCR* color model, zero is returned.

Example:

unsigned int dUCGray = erImageGetPixelDepth(ER_IMAGE_COLORMODEL_GRAY , ER_IMAGE_DATATYPE_UCHAR);
// dUCGray == 1

unsigned int dFBGR = erImageGetPixelDepth(ER_IMAGE_COLORMODEL_BGR , ER_IMAGE_DATATYPE_FLOAT);
// dFBGR == 3*sizeof(float)

Eyedea Recogniton, s.r.o.



ERImage Application Interface 54

erVersion

Returns the version of the ERImage structure and all related image utilities.

Specification:

const char* erVersion(void);

Returns:

• version of the ERImage – String containing the version of the ERImage.

Description:

The function erVersion() is used to get the version of the ERImage structure and all related image utilities.

The function returns a string which contains the version number.

Example:

const char* version = erVersion();
std::cout << "ERImage version: " << version << std::endl;

erImageRead

Reads the image from a file, decodes it, and loads it into the supplied ERImage structure instance.

Specification:

int erImageRead(ERImage* image, const char* filename);

Input:

• image

Pointer to the ERImage structure instance to load the image into.

• filename

String containing the path to the image file to read.

Returns:

• 0 – Image successfully read.

• other – Error during image reading.

Description:

The function erImageRead() is used to read and decode the image from the given file and load it into

the supplied ERImage structure instance. The input is the pointer to the ERImage instance and the string

containing the path to the image file to open.

Supported image formats:

JPEG files *.jpeg, *.jpg, *.jpe

JPEG 2000 files *.jp2

Portable Network Graphics *.png

Windows bitmaps *.bmp, *.dib

TIFF files *.tiff, *.tif

Portable image format *.pbm, *.pgm, *.ppm *.pxm, *.pnm

Example:

char* filename = "./image.jpg"; // Image file path to read
ERImage* image = new ERImage(); //hrefi Initialize the ERImage
int res = erImageRead(image, filename); // Read the image

Eyedea Recogniton, s.r.o.



ERImage Application Interface 55

erImageWrite

Encodes and writes the image from the ERImage structure to a file.

Specification:

int erImageWrite(const ERImage* image, const char* filename);

Input:

• image

Pointer to the ERImage structure instance containing the image to write.

• filename

String containing the path to the image file to write.

Returns:

• 0 – Image successfully written.

• other – Error during image writing.

Description:

The function erImageWrite() is used to encode and write the image to the given file from the ERImage

structure instance. The input is the pointer to the ERImage instance and the string containing the path to

the image file to write. Output image format is automatically selected from the filename extension with

respect to the table of supported formats in the erImageRead chapter.

Example:

char* filename = "./image.jpg"; // Image file path to write
ERImage* image; // ERImage containing the image to write
int res = erImageWrite(image, filename); // Write the image

erImageFree

Frees the whole ERImage structure instance.

Specification:

void erImageFree(ERImage* image);

Input:

• image

Pointer to the ERImage structure instance to delete.

Description:

The function erImageFree() is used to free the image data arrays contained in the ERImage structure in-

stance and also to set all the property fields to 0. The input is the pointer to the ERImage instance you

wish to free.

IMPORTANT: The function DOES NOT delete the ERImage instance pointer because the user creates

the pointer.

Example:

erImageAllocate(image, 800, 600, ER_IMAGE_COLORMODEL_GRAY , ER_IMAGE_DATATYPE_UCHAR);
// ...
erImageFree(image); // every field in the image structure is freed and set to NULL or 0

Eyedea Recogniton, s.r.o.



LPM SDK Licensing 56

8 LPM SDK Licensing
LPM SDK uses the third-party framework developed by Thales for software protection and licensing. The

SDK is protected against reverse engineering and unlicensed execution using hardware USB keys. The SDK

can not be used without a USB license key with a valid license except in tral version, which uses software

key instead.

8.1 License Key Types
The SDK allows loading a license using various hardware key types which are listed in the following table.

The keys differ by the number of licenses they can contain (Pro andMax versions), by physical dimensions,

ability to contain time-limited licenses (Time versions) and ability to distribute licenses over the network

(Net versions).

SKU Product SKU Product

SH-PRO Sentinel HL Pro SH-BRD
Sentinel HL Max

(Board form factor)

SH-MAX Sentinel HL Max SH-TIM Sentinel HL Time

SH-MIC
Sentinel HL Max

(Micro form factor)
SH-NET Sentinel HL Net

SH-CHP
Sentinel HL Max

(Chip form factor)
SH-NTT Sentinel HL NetTime

8.2 Licenses Overview
Several licenses are available for the LPMSDK. The licenses differ in the type of the binarymodelswhich can

be loaded, the time period for which the license is valid, and the number of allowed function executions.

8.2.1 Perpetual License
A perpetual license is the least restrictive license available. It allows the user to use the license in specified

number of instances for unlimited time and unlimited number of executions. This license type is used for

products which will be deployed to the end-user.

8.2.2 Time-Limited License
A time-limited license allows to set a restriction on the time for which the license is valid. The license

validity end date or the number of the days for which the license is valid after the first use can be set. This

license can be set on Time keys only (see License Key Types). This type of license is used mainly in the

Eyedea Recogniton, s.r.o.



LPM SDK Licensing 57

Developer package.

8.2.3 Execution Counting
An execution counting license allows counting the number of times the license was logged in. The SDK is

designed in such a way that it logs in the license every time a specified SDK function is called. It allows

limiting the number of executions with the license. This type of license is used mainly in the Developer

package.

8.3 License Management
The license protection software provides a web interface for license management. The web interface can

be found on the address http://localhost:1947 opened in the common web browser. It allows the user to

list the connected license keys, see the details of the arbitrary license key, update the license, and several

other functions.

8.3.1 Connected License Keys
The list of license keys currently plugged in the computer is available at http://localhost:1947/_int_/de-

vices.html. The list contains basic information about each key, including the location of the key (Local or

IP/name of the remote machine), Vendor ID, Key ID, Key Type, Configuration, Version and the number of

connected Sessions. For each key, it is possible to list the contained license products, features and sessions

using the buttons Products, Features and Sessions. For easy identification, the USB key LED can be blinked

using the Blink On button in the Actions column. The unique key identification file can be downloaded

using the C2V button.

Web interface with list of plugged keys on http://localhost:1947/_int_/devices.html

8.3.2 License Key Details
Detailed information about a key can be acquired by clicking on the Features button in the Connected

License Keys list or at http://localhost:1947/_int_/features.html?haspid=KEYID, where the KEYID is the ID

of the key. The web page contains information about the licenses contained on the key. The set of all

Eyedea Recogniton, s.r.o.

http://localhost:1947
http://localhost:1947/_int_/devices.html
http://localhost:1947/_int_/devices.html
http://localhost:1947/_int_/devices.html
http://localhost:1947/_int_/features.html?haspid=KEYID


LPM SDK Licensing 58

the features represents the whole license. Each Feature controls a different part of the SDK workflow

(initialization, binary model selection, descriptor computation, …).

Web interface with key 517285691

details on http://localhost:1947/_int_/features.html?haspid=517285691

8.4 License Update
The license can be updated using a special *.v2c file, which is emitted by the licensor of the software. The

license update file is generated for a specific license key ID and only that key can be updated using the file.

There are two ways of updating the license: Web Interface and Command Line.

The license update must be done on the computer where the protection software supplied with the SDK

package is installed. For more information about the protection software installation see the chapter In-

stallation Guide.

IMPORTANT: The hardware protection key dongle with the license to be updated needs to be con-

nected to the machine where the license update will be applied.

8.4.1 Web Interface
The first option allows the user to update the license using the web interface of the license management

software Sentinel Admin Control Center. The web interface which can be opened in all modern browsers

is located at http://localhost:1947/_int_/checkin.html.

Eyedea Recogniton, s.r.o.

http://localhost:1947/_int_/features.html?haspid=517285691
http://localhost:1947/_int_/checkin.html


LPM SDK Licensing 59

Web interface for license update on http://localhost:1947/_int_/checkin.html

How to update the license:

1. Open the link http://localhost:1947/_int_/checkin.html in the web browser.

2. Click on the Select File button and select the *.v2c file which you want to use for the update.

3. Click on the Apply File button.

4. A webpage with the result of the license update is shown.

8.4.2 Command Line
The secondmethod of updating the license is by using theWindows command line or a Linux console. This

approach can be very useful when applying the update remotely or on many devices. It is also suitable for

automating the license update procedure. This option requires basic knowledge of theWindows command

line or some Linux console. The license update file *.v2c is applied using the hasp_update utility from the

folder hasp/ located in the corresponding SDK package root.

Windows command line

Run the hasp_update utility with following parameter and the *.v2c file path on the selected machine:

hasp_update u /path/to/v2c/license.v2c

If the command runs without any errors, the license has been updated successfully.

Linux console

Run the hasp_update utility with following parameter and the *.v2c file path on the selected machine:

./hasp_update u /path/to/v2c/license.v2c

If the command runs without any errors, the license has been updated successfully.

Eyedea Recogniton, s.r.o.

http://localhost:1947/_int_/checkin.html
http://localhost:1947/_int_/checkin.html


Third Party Software 60

9 Third Party Software
The LPM SDK uses third party software libraries in accordance with their licenses. The licenses can be

found under [LPMSDK]/documentation/3rdparty-licenses.

Here is a complete list of all libraries used, in alphabetical order:

• Boost

• Iniparser

• OpenCL

• OpenCV

• OpenSSL

• TensorFlow Lite

• ZLib

The following statements are published to fulfill the license terms of the respective libraries:

“This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit

(http://www.openssl.org/).”

Eyedea Recogniton, s.r.o.


	Product Description
	Technical Details
	System Workflow

	Distribution Contents
	Installation Guide
	Pre-installation
	Sentinel LDK Installation
	Windows
	Linux

	Verification of Installation
	Installation Failures
	Managing Licenses
	License Error Codes
	TensorRT
	TensorRT LPM SDK Models
	Generating Device Specific Models
	Known Issues

	OpenGL Prerequisites

	SDK Application Interface
	Enumerators
	LpmViewType
	LpmDetectionLabel


	Structures
	LpmModuleInfo
	LpmPropertyFlags
	LpmLicenseInfo
	LpmDateTime
	LpmCameraViewParams
	LpmModuleConfig
	LpmModuleConfig_extension1
	LpmBoundingBox
	LpmDetResult
	LpmDetResult_extension1
	LpmDetection
	LpmDetection_extension1
	LpmDetection_extension2
	LpmOcrResult
	LpmOcrHypothesis
	LpmLpDimensions
	LpmTextLine


	Functions
	Main LPM engine functions
	lpmInit
	lpmFree
	lpmVersion
	lpmCompilationDate

	Camera view configuration functions
	lpmLoadViewConfig
	lpmWriteViewConfig

	LPM modules handling functions
	lpmLoadModule
	lpmFreeModule
	lpmRunDet
	lpmFreeDetResult
	lpmRunOcr
	lpmFreeOcrResult
	lpmGetNumAvlbModules
	lpmGetModuleIndex
	lpmGetModuleIndexByName
	lpmGetModuleInfo

	Error logging functions
	lpmGetLastError



	Examples
	LPM SDK Example
	Initialization of the LPM engine
	Listing of available LPM modules
	Writing camera view parameters
	Loading camera view parameters
	Getting LPM module index
	Setting module configuration parameters
	Loading LPM module
	Input image loading
	License/ADR plates detection
	Printing detection information
	License/ADR plate OCR
	Cleaning up


	Modules configuration files
	General configuration file config.ini
	EYEDENTIFY PARAMETERS
	OCR PARAMETERS
	OCR MODELS
	DET PARAMETERS
	LPIMAGE CROP PARAMETERS

	Detector configuration file config-det.ini
	MODULE
	NMS PARAMETERS
	DETECTION MODELS
	ROI
	PADDING


	ERImage Application Interface
	Image Format
	BGR
	Gray
	YCbCr I420
	BGRA
	YCbCr NV12

	Application Interface
	Enumerators
	ERImageColorModel
	ERImageColorModel
	ERImageDataType
	ERImageDataType

	Structures
	ERImage
	ERImage

	Functions
	erImageAllocate
	erImageAllocate
	erImageAllocateBlank
	erImageAllocateBlank
	erImageAllocateAndWrap
	erImageAllocateAndWrap
	erImageCopy
	erImageCopy
	erImageGetDataTypeSize
	erImageGetDataTypeSize
	erImageGetColorModelNumChannels
	erImageGetColorModelNumChannels
	erImageGetPixelDepth
	erImageGetPixelDepth
	erVersion
	erVersion
	erImageRead
	erImageRead
	erImageWrite
	erImageWrite
	erImageFree
	erImageFree



	LPM SDK Licensing
	License Key Types
	Licenses Overview
	Perpetual License
	Time-Limited License 
	Execution Counting

	License Management
	Connected License Keys
	License Key Details

	License Update
	Web Interface
	Command Line
	Windows command line
	Linux console



	Third Party Software

