

MMR+ANPR REST Server 4.4.3
User Guide

Copyright © 2025, Eyedea Recognition s.r.o.

All rights reserved

Eyedea Recognition s.r.o. is not responsible for any damages or losses caused by incorrect or

inaccurate results or unauthorized use of the software MMR+ANPR REST Server.

Gemalto, the Gemalto logo, are trademarks and service marks of Gemalto and are registered in certain

countries. Safenet, Sentinel, Sentinel Local License Manager and Sentinel Hardware Key are

registered trademarks of Safenet, Inc.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Intel is a trademark of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

NVIDIA, the NVIDIA logo, GeForce®, GeForce® GTX, CUDA®, the CUDA logo are trademarks

and/or registered trademarks of NVIDIA Corporation in the U.S. and/or other countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be

trademarks of their respective owners.

Docker and the Docker logo are trademarks or registered trademarks of Docker, Inc. in the United

States and/or other countries. Docker, Inc. and other parties may also have trademark rights in other

terms used herein.

Contact:

 Address:

 Eyedea Recognition, s.r.o.

 Vyšehradská 320/49

 128 00, Prague 2

 Czech Republic

 web: http://www.eyedea.ai

 email: info@eyedea.ai

http://www.eyedea.ai/

Table of Contents
1 Introduction .. 1-4

2 Hardware requirements .. 2-5

2.1 Minimal requirements ... 2-5

2.2 Recommended requirements ... 2-5

3 Version history ... 3-6

4 Docker setup .. 4-14

4.1 GPU Support Prerequisites ... 4-14

4.2 Sentinel license protection system .. 4-14

4.3 Building the Docker image ... 4-15

4.4 Running the Docker image ... 4-17

4.5 Log files .. 4-19

5 REST API Documentation ... 5-21

5.1 SDK Engine Overview .. 5-21

5.2 Response Status Codes.. 5-22

5.3 Entry point... 5-22

5.4 System Info ... 5-22

5.5 Recognition ... 5-28

1-4

Eyedea Recognition, s.r.o.

1 Introduction

Eyedea Recognition's MMR+ANPR REST Server is a Java server application with REST interface running on

Tomcat Docker container which allows to detect vehicles (or generally "road users") in input images and

recognize the type and text of detected plates, as well as the view, category, make, model, generation, variation,

color and tags (various traits) of the vehicle.

MMR+ANPR REST Server uses our state-of-the-art libraries, LPM and MMR SDK, with a possibility to easily

switch to the latest models or modules for a different region. Both server REST interface and the simple web

application built on it provide the detection and recognition used in various use cases, as well as server

monitoring.

2-5

Eyedea Recognition, s.r.o.

2 Hardware requirements

2.1 Minimal requirements

• Processor: Intel® Core™ i5, 2 cores (4 logical processors)

• RAM: 4 GB

• Hard disk: 256 GB (optional SSD)

• GPU (optional): NVIDIA Driver version >= 410.48 compatible

• Operating system: Ubuntu 18.04 and higher – x86_64 platform

2.2 Recommended requirements

• Processor: Intel® Core™ i7, 4 cores (8 logical processors)

• RAM: 16 GB

• Hard disk: 512 GB, SSD

• GPU (optional): NVIDIA® GeForce® GTX 1050 Ti, 4GB GDDR5

• Operating system: Ubuntu 18.04 and higher – x86_64 platform

3-6

Eyedea Recognition, s.r.o.

3 Version history

Version 4.4.3

Released: 2025/06/18

• Updated LPM and MMR modules

• Used LPM SDK: LPM-v7.8.0-2025-02-04-Ubuntu-18.04-hasp10.0

• Updated MMR SDK: Eyedea-MMR-2.25.0-Ubuntu-20.04-x86_64-HASP

• Used Sentinel license protection system: aksusbd_108842-10.11.1

• Embedded modules with GPU support are using CUDA 10.0.

(CUDA 10.0 requires the Linux x86_64 Driver version >= 410.48)

Version 4.4.2

Released: 2025/04/11

• Updated LPM modules

• Improved support for JPEG images with non-standard EXIF metadata

• Used LPM SDK: LPM-v7.8.0-2025-02-04-Ubuntu-18.04-hasp10.0

• Used MMR SDK: Eyedea-MMR-2.24.0-Ubuntu-20.04-x86_64-HASP

• Used Sentinel license protection system: aksusbd_108842-10.11.1

• Embedded modules with GPU support are using CUDA 10.0.

(CUDA 10.0 requires the Linux x86_64 Driver version >= 410.48)

Version 4.4.1

Released: 2025/03/28

• Removed isSingleLine plate attribute from recognition request and response

• Used LPM SDK: LPM-v7.8.0-2025-02-04-Ubuntu-18.04-hasp10.0

• Used MMR SDK: Eyedea-MMR-2.24.0-Ubuntu-20.04-x86_64-HASP

• Used Sentinel license protection system: aksusbd_108842-10.11.1

• Embedded modules with GPU support are using CUDA 10.0.

(CUDA 10.0 requires the Linux x86_64 Driver version >= 410.48)

Version 4.4.0

Released: 2025/03/24

• Supported segmentation (LPM module 802, if explicitly enabled)

• Used LPM SDK: LPM-v7.8.0-2025-02-04-Ubuntu-18.04-hasp10.0

• Used MMR SDK: Eyedea-MMR-2.24.0-Ubuntu-20.04-x86_64-HASP

• Used Sentinel license protection system: aksusbd_108842-10.11.1

• Embedded modules with GPU support are using CUDA 10.0.

(CUDA 10.0 requires the Linux x86_64 Driver version >= 410.48)

3-7

Eyedea Recognition, s.r.o.

Version 4.3.1

Released: 2025/03/17

• Updated LPM modules

• Used LPM SDK: LPM-v7.8.0-2025-02-04-Ubuntu-18.04-hasp10.0

• Used MMR SDK: Eyedea-MMR-2.24.0-Ubuntu-20.04-x86_64-HASP

• Used Sentinel license protection system: aksusbd_108842-10.11.1

• Embedded modules with GPU support are using CUDA 10.0.

(CUDA 10.0 requires the Linux x86_64 Driver version >= 410.48)

Version 4.3.0

Released: 2025/03/07

• Supported wheel detection (LPM module 802)

• Supported grouping of road users into combinations (LPM module 802)

• Refined description of recognition error messages

• Updated LPM SDK: LPM-v7.8.0-2025-02-04-Ubuntu-18.04-hasp10.0

• Used MMR SDK: Eyedea-MMR-2.24.0-Ubuntu-20.04-x86_64-HASP

• Used Sentinel license protection system: aksusbd_108842-10.11.1

• Embedded modules with GPU support are using CUDA 10.0.

(CUDA 10.0 requires the Linux x86_64 Driver version >= 410.48)

Version 4.2.0

Released: 2024/12/12

• Updated LPM and MMR modules, added view8 to MMR results

• Used LPM SDK: LPM-v7.7.0-2024-11-05-Ubuntu-18.04-hasp9.0

• Updated MMR SDK: Eyedea-MMR-2.24.0-Ubuntu-20.04-x86_64-HASP

• Used Sentinel license protection system: aksusbd_108842-10.11.1

• Embedded modules with GPU support are using CUDA 10.0.

(CUDA 10.0 requires the Linux x86_64 Driver version >= 410.48)

Version 4.1.5

Released: 2024/11/08

• Updated LPM modules

• Updated LPM SDK: LPM-v7.7.0-2024-11-05-Ubuntu-18.04-hasp9.0

• Used MMR SDK: Eyedea-MMR-2.23.0-Ubuntu-20.04-x86_64-HASP

• Used Sentinel license protection system: aksusbd_108842-10.11.1

• Embedded modules with GPU support are using CUDA 10.0.

(CUDA 10.0 requires the Linux x86_64 Driver version >= 410.48)

Version 4.1.4

Released: 2024/10/01

• Added unreadable plate attribute to recognition response

• Used LPM SDK: LPM-v7.6-2023-11-10-Ubuntu-18.04-hasp9.0

• Used MMR SDK: Eyedea-MMR-2.23.0-Ubuntu-20.04-x86_64-HASP

• Used Sentinel license protection system: aksusbd_108842-10.11.1

3-8

Eyedea Recognition, s.r.o.

• Embedded modules with GPU support are using CUDA 10.0.

(CUDA 10.0 requires the Linux x86_64 Driver version >= 410.48)

Version 4.1.3

Released: 2024/09/23

• Added support for AVIF image files

• Used LPM SDK: LPM-v7.6-2023-11-10-Ubuntu-18.04-hasp9.0

• Used MMR SDK: Eyedea-MMR-2.23.0-Ubuntu-20.04-x86_64-HASP

• Used Sentinel license protection system: aksusbd_108842-10.11.1

• Embedded modules with GPU support are using CUDA 10.0.

(CUDA 10.0 requires the Linux x86_64 Driver version >= 410.48)

Version 4.1.2

Released: 2024/09/19

• Improved some Bad Request error messages

• Used LPM SDK: LPM-v7.6-2023-11-10-Ubuntu-18.04-hasp9.0

• Used MMR SDK: Eyedea-MMR-2.23.0-Ubuntu-20.04-x86_64-HASP

• Used Sentinel license protection system: aksusbd_108842-10.11.1

• Embedded modules with GPU support are using CUDA 10.0.

(CUDA 10.0 requires the Linux x86_64 Driver version >= 410.48)

Version 4.1.1

Released: 2024/09/04

• Updated LPM modules

• Used LPM SDK: LPM-v7.6-2023-11-10-Ubuntu-18.04-hasp9.0

• Used MMR SDK: Eyedea-MMR-2.23.0-Ubuntu-20.04-x86_64-HASP

• Updated Sentinel license protection system: aksusbd_108842-10.11.1

• Embedded modules with GPU support are using CUDA 10.0.

(CUDA 10.0 requires the Linux x86_64 Driver version >= 410.48)

Version 4.1.0

Released: 2024/08/01

• Added possibility to start server with several MMR Box/Plate engines running

• Used LPM SDK: LPM-v7.6-2023-11-10-Ubuntu-18.04-hasp9.0

• Used MMR SDK: Eyedea-MMR-2.23.0-Ubuntu-20.04-x86_64-HASP

• Used Sentinel license protection system: aksusbd_108842-9.12.1

• Embedded modules with GPU support are using CUDA 10.0.

(CUDA 10.0 requires the Linux x86_64 Driver version >= 410.48)

Version 4.0.1

Released: 2024/06/21

• Updated LPM and MMR modules

• Used LPM SDK: LPM-v7.6-2023-11-10-Ubuntu-18.04-hasp9.0

3-9

Eyedea Recognition, s.r.o.

• Used MMR SDK: Eyedea-MMR-2.23.0-Ubuntu-20.04-x86_64-HASP

• Used Sentinel license protection system: aksusbd_108842-9.12.1

• Embedded modules with GPU support are using CUDA 10.0.

(CUDA 10.0 requires the Linux x86_64 Driver version >= 410.48)

Version 4.0.0

Released: 2024/04/24

• Unified interface for road users detection and recognition

• Reorganized recognition request and response

• Used combined detector (detecting license plates, boxes, windshields)

• Added possibility to start server with several detection and OCR engines running

• Used LPM SDK: LPM-v7.6-2023-11-10-Ubuntu-18.04-hasp9.0

• Used MMR SDK: Eyedea-MMR-2.22.0-Ubuntu-18.04-x86_64-HASP

• Used Sentinel license protection system: aksusbd_108842-9.12.1

• Embedded modules with GPU support are using CUDA 10.0.

(CUDA 10.0 requires the Linux x86_64 Driver version >= 410.48)

Version 3.0.0

Released: 2023/06/29

• Supported vehicle detection + recognition

• Changed POST endpoint for license plate recognition: recognition → lpRecognition

• Renamed optional license plate recognition data parameters: boundingBox → roi,

lpDetection → lpDetections

• Changed default license plate LPM module to 801 (general)

• Moved LPM module and MMR models settings from Dockerfile to env-*.list files

• Used LPM module: LPM-v7.4.1-2023-01-12-Ubuntu-18.04-hasp

• Used MMR module: Eyedea-MMR-2.21.0-Ubuntu-18.04-x86_64-HASP

• Updated Sentinel license protection system: aksusbd_108842-9.12.1

• Embedded modules with GPU support are using CUDA 10.0.

(CUDA 10.0 requires the Linux x86_64 Driver version >= 410.48)

Version 2.3.2

Released: 2023/05/23

• Added option to log errors, warnings and recognition statistics to files

• Added server start time to system info response

• Used LPM module: LPM-v7.4.1-2023-01-12-Ubuntu-18.04-hasp

• Used MMR module: Eyedea-MMR-2.20.0-Ubuntu-18.04-x86_64-HASP

• Updated Sentinel license protection system: aksusbd_108842-8.53.1

• Embedded modules with GPU support are using CUDA 10.0.

(CUDA 10.0 requires the Linux x86_64 Driver version >= 410.48)

Version 2.3.1

Released: 2023/04/14

• Supported new LPM features: added occlusion, truncated and cluster detection attributes

• Modified layout of Recognition page

3-10

Eyedea Recognition, s.r.o.

• Used LPM module: LPM-v7.4.1-2023-01-12-Ubuntu-18.04-hasp

• Used MMR module: Eyedea-MMR-2.20.0-Ubuntu-18.04-x86_64-HASP

• Updated Sentinel license protection system: aksusbd-8.51.1

• Embedded modules with GPU support are using CUDA 10.0.

(CUDA 10.0 requires the Linux x86_64 Driver version >= 410.48)

Version 2.3.0

Released: 2023/01/05

• Supported new MMR features: added tags to response, all-in-one MMR engine

• Computing all MMR attributes (view, category, make, model, generation, variation, color and tags) by

default

• Renamed MMR related Dockerfile and env.list variables

• Used LPM module: LPM-v7.4.0-2022-08-30-Ubuntu-18.04-hasp

• Used MMR module: Eyedea-MMR-2.20.0-Ubuntu-18.04-x86_64-HASP

• Embedded modules with GPU support are using CUDA 10.0.

(CUDA 10.0 requires the Linux x86_64 Driver version >= 410.48)

Version 2.2.0

Released: 2022/09/27

• New product branding as "MMR+ANPR REST Server"

• Changed entry point to SERVER_IP:8080/RESTServer

• Used LPM module: LPM-v7.4.0-2022-08-30-Ubuntu-18.04-hasp

• Used MMR module: Eyedea-MMR-2.12.0-Ubuntu-18.04-x86_64-HASP

• Embedded modules with GPU support are using CUDA 10.0.

(CUDA 10.0 requires the Linux x86_64 Driver version >= 410.48)

Version 2.1.1

Released: 2022/08/18

• Used LPM module: LPM-v7.3.1-2022-08-16-Ubuntu-18.04-hasp

• Used MMR module: Eyedea-MMR-2.12.0-Ubuntu-18.04-x86_64-HASP

• Embedded modules with GPU support are using CUDA 10.0.

(CUDA 10.0 requires the Linux x86_64 Driver version >= 410.48)

Version 2.1.0

Released: 2022/07/28

• Fixed returning error message on SDK (usually license) error.

• Renamed Dockerfile and env.list variables.

• Limited number of LPM Detector CPU threads to 1 (optimized internally).

• Extended documentation.

• Updated to Java 12. Built with OpenJDK 12.0.1.

• Used LPM module: LPM-v7.3.0-2022-06-22-Ubuntu-18.04-hasp

• Used MMR module: Eyedea-MMR-2.12.0-Ubuntu-18.04-x86_64-HASP

• Updated Sentinel license protection system: aksusbd-8.41.1

• Embedded modules with GPU support are using CUDA 10.0.

(CUDA 10.0 requires the Linux x86_64 Driver version >= 410.48)

3-11

Eyedea Recognition, s.r.o.

Version 2.0.4

Released: 2022/04/11

• Fixed LPM memory leak.

• Used LPM module: LPM-v7.2-2021-10-08-Ubuntu-16.04-hasp

• Used MMR module: Eyedea-MMR-2.11.0-Ubuntu-18.04-x86_64-HASP

• Embedded modules with GPU support are using CUDA 10.0.

(CUDA 10.0 requires the Linux x86_64 Driver version >= 410.48)

Version 2.0.3

Released: 2022/02/24

• Added support for GPU detection (currently available for LPM module 800).

• Reduced Sentinel license requirements.

• Fixed initialization of engines running on the CPU.

• LPM module selection moved to Dockerfile.

• Used LPM module: LPM-v7.2-2021-10-08-Ubuntu-16.04-hasp

• Used MMR module: Eyedea-MMR-2.11.0-Ubuntu-18.04-x86_64-HASP

• Embedded modules with GPU support are using CUDA 10.0.

(CUDA 10.0 requires the Linux x86_64 Driver version >= 410.48)

Version 2.0.2

Released: 2021/12/20

• Split MMR-VCMMGV and MMR-Color in settings, renamed Dockerfile and env.list variables.

• Used LPM module: LPM-v7.2-2021-10-08-Ubuntu-16.04-hasp

• Used MMR module: Eyedea-MMR-2.11.0-Ubuntu-18.04-x86_64-HASP

• Updated Sentinel license protection system: aksusbd-8.31.1

• Embedded modules with GPU support are using CUDA 10.0.

(CUDA 10.0 requires the Linux x86_64 Driver version >= 410.48)

Version 2.0.1

Released: 2021/07/16

• Added generation and variation attributes to MMR result.

• Used LPM module: LPM-v7.1-2020-04-16-Ubuntu-16.04-hasp

• Used MMR module: Eyedea-MMR-2.10.0-Ubuntu-18.04-x86_64-HASP

• Updated Sentinel license protection system: aksusbd-8.21.1

• Embedded modules with GPU support are using CUDA 10.0.

(CUDA 10.0 requires the Linux x86_64 Driver version >= 410.48)

Version 2.0.0

Released: 2021/02/02

• Added more detailed SDK information to serverSystemInfo response.

• Removed null / NaN fields from response.

• Used LPM module: LPM-v7.1-2020-04-16-Ubuntu-16.04-hasp

• Used MMR module: Eyedentify-VCL-2.9.0-Ubuntu-16.04-x86_64-HASP

• Embedded modules with GPU support are using CUDA 10.0.

3-12

Eyedea Recognition, s.r.o.

(CUDA 10.0 requires the Linux x86_64 Driver version >= 410.48)

Version 2.0.0-BETA

Released: 2020/12/11

• Used LPM SDK for detection and OCR.

• Added option to specify a bounding box to reduce the input image area scanned by the detector.

• Simplified response for OCR / MMR module disabled (returning null).

• Removed countryID from anprResult response element.

• Used LPM module: LPM-v7.1-2020-04-16-Ubuntu-16.04-hasp

• Used MMR module: Eyedentify-VCL-2.9.0-Ubuntu-16.04-x86_64-HASP

• Embedded modules with GPU support are using CUDA 10.0.

(CUDA 10.0 requires the Linux x86_64 Driver version >= 410.48)

Version 1.2.1

Released: 2020/04/14

• Used EyeScan module: EyeScanSDK-v3.8.3-DummyPack-Ubuntu-16.04-x86_64-HASP

• Used ANPR module: Eyedentify-ANPR-2.7.0-Ubuntu-16.04-x86_64-hasp

• Used MMR module: Eyedentify-VCL-2.7.2-Ubuntu-16.04-x86_64-hasp

• Embedded modules with GPU support are using CUDA 10.0.

(CUDA 10.0 requires the Linux x86_64 Driver version >= 410.48)

Version 1.2.0

Released: 2019/10/08

• Added support for bypassing the internal detector by specifying license plates positions in JSON format.

• HTML documentation updated.

• Used EyeScan module: EyeScanSDK-v3.7.0-DummyPack-Ubuntu-16.04-x86_64-HASP

• Used ANPR module: Eyedentify-ANPR-2.5.1-Ubuntu-16.04-x86_64-hasp

• Used MMR module: Eyedentify-VCL-2.6.0-Ubuntu-16.04-x86_64-hasp

• Embedded modules with GPU support are using CUDA 9.1.85.

(CUDA 9.1.85 requires the Linux x86_64 Driver version >= 390.46)

Version 1.1.1

Released: 2019/07/01

• Added option to run the server with ANPR / MMR modules disabled.

• HTML documentation updated.

• Embedded modules with GPU support are using CUDA 9.1.85.

(CUDA 9.1.85 requires the Linux x86_64 Driver version >= 390.46)

Version 1.1.0

Released: 2019/04/17

• Web interface added: System Info page and Recognition page.

• Updated to the Java 11. Built with OpenJDK 11.0.2.

• HTML documentation added.

3-13

Eyedea Recognition, s.r.o.

• Used EyeScan module: EyeScanSDK-v3.4.1-DummyPack-Ubuntu-16.04-x86_64-HASP

• Used ANPR module: Eyedentify-ANPR-2.5.1-Ubuntu-16.04-x86_64-hasp

• Used MMR module: Eyedentify-VCL-2.5.1-Ubuntu-16.04-x86_64-hasp

• Embedded modules with GPU support are using CUDA 9.1.85.

(CUDA 9.1.85 requires the Linux x86_64 Driver version >= 390.46)

Version 1.1.0-BETA

Released: 2019/01/11

• Added support for descriptor batch computation.

• Added support for GPU computation (ANPR, MMR).

• Embedded modules with GPU support are using CUDA 9.1.85.

(CUDA 9.1.85 requires the Linux x86_64 Driver version >= 390.46)

Version 1.0.0

Released: 2018/06/13

• First release version.

• MMR and ANPR recognition REST API server application with basic functionality for still photos.

• Docker image creation scripts included.

4-14

Eyedea Recognition, s.r.o.

4 Docker setup

4.1 GPU Support Prerequisites

If you do not intend to use the GPU, you can skip this chapter.

1. Install GPU

Install GPU supporting NVIDIA CUDA® platform into your Docker host system. The Docker host

is the system running the Docker daemon.

2. Linux x86_64

Using the GPU for computation in the Docker environment requires the Docker to be installed and

running on the Linux x86_64 system. Use the distribution which is supported by both the Docker

and the NVIDIA Driver.

3. Install NVIDIA Driver

Install NVIDIA Driver into the Docker host system. See the Version history for the minimal

NVIDIA Driver version required by the CUDA® used in the current build. Write down the version

of the NVIDIA Driver you are installing, the same driver version must be installed in the Docker

image (see the chapter Building the Docker image).

4. Install nvidia-container-runtime library

Install nvidia-container-runtime library into the Docker host system. As root, run the following

script:

./installNvidiaContainerRuntime

5. Ensure nvidia_uvm kernel module is loaded

Verify that the /dev/nvidia-uvm device exists and that the nvidia_uvm kernel module is loaded:

lsmod | grep nvidia_uvm

If the command produces no output, the module is not loaded. Load it on the Docker host by running

the following command as root:

modprobe nvidia-uvm

4.2 Sentinel license protection system

The SDK engines used by MMR+ANPR REST Server are protected with a standard third-party

software licensing solution, Sentinel LDK by Gemalto.

1. Uncompress the package containing the Run-time Environment installer

Uncompress the aksusbd*.tar.gz file.

2. Uninstall prior Sentinel LDK Run-time Environment version

If you have installed a prior version of the Sentinel LDK Run-time Environment, as root, run the

following script from the uncompressed directory to uninstall it:

./dunst

4-15

Eyedea Recognition, s.r.o.

3. Install the Sentinel LDK Run-time Environment

As root, run the following script from the uncompressed directory to install the Sentinel LDK Run-

time Environment:

./dinst

Note:

If you encounter the “No such file or directory” error, you may need to install the 32-bit compatibility

binaries. As root, execute the following command before installing the Sentinel LDK Run-time

Environment:

apt-get install libc6:i386

4. Verify the Sentinel LDK Run-time Environment installation

To verify the Sentinel LDK Run-time Environment installation, open the address

http://localhost:1947/_int_/devices.html in a web browser or check the output of the following

command:

service aksusbd status

4.3 Building the Docker image

0. Prerequisites

Docker (https://www.docker.com) must be installed and Docker daemon must be running before

creating the Docker image.

1. Set the Docker image variables (Dockerfile)

Instructions for building the Docker image are listed in Dockerfile which is located in the [PACKAGE]/

directory. Set the NVIDIA_DRIVER_VERSION variable (line 14) to install the proper version of the

NVIDIA Driver (needed for GPU computation). The same version of the Driver must be installed

on the Docker host system.

The NVIDIA Driver version may be found out by running the following command:

nvidia-smi

Set the NVIDIA_DRIVER_VERSION variable to empty to disable the NVIDIA Driver installation. In

that case only CPU computation will be supported.

Example of line 14 in Dockerfile which enables GPU computation:

ENV NVIDIA_DRIVER_VERSION=410.104

Example of line 14 in Dockerfile for CPU computation only:

ENV NVIDIA_DRIVER_VERSION=

To update LPM or MMR SDK, change the LPM_VERSION (line 17) or MMR_VERSION (line 20)

variables, respectively. The appropriate *.tar.gz archive must be in the [PACKAGE]/ directory.

Example of line 17 in Dockerfile defining the latest LPM SDK version:

ENV LPM_VERSION=v7.8.0-2025-02-04-Ubuntu-18.04-hasp10.0

Example of line 20 in Dockerfile defining the latest Eyedea MMR SDK version:

ENV MMR_VERSION=2.25.0-Ubuntu-20.04-x86_64-HASP

http://localhost:1947/_int_/devices.html
https://www.docker.com/
file:///C:/Users/fremunto/Sources/Eyedea/FaceServer/MMRRESTServer/Dockerfile

4-16

Eyedea Recognition, s.r.o.

2. Optionally: Enable segmentations

Segmentations are a new feature of the LPM module 802 detector, allowing it to return a binary

mask for each detected object. This can be useful for visualization or precise anonymization of

complex objects. However, enabling segmentations slows down detection by approximately 30%,

so it is disabled by default.

To enable segmentations, update the following configuration files in the [PACKAGE]/LPM-modules/

802-generic.gen-gen-v7.12-2025-05-13-Ubuntu-18.04-x86_64-tf2lite-hasp10.0.tar.gz archive:

• Modify modules-v7/x86_64/802-generic.gen-gen-v7.12/config-det.COMBINED.ini

The model_filename parameter in the [DETECTION MODELS] section specifies which data

model is used for detection. By default, the faster models/CNN_DETECTTF2LITE_

COMBINED_BGR_640x640_NONE_NONE_EXP20_enc.dat is used, but it does not support

segmentations.

To enable segmentations, comment out the default model (with #) and uncomment the

segmentation-supported model model_filename="models/CNN_DETECTTF2LITE_COMBINED_

BGR_640x640_NONE_NONE_EXP21_enc.dat".

Model supporting segmentations:

[DETECTION MODELS]

model_filename="models/CNN_DETECTTF2LITE_COMBINED_BGR_640x640_NONE_NONE_EXP20_enc.dat"

Model with segmentations

model_filename="models/CNN_DETECTTF2LITE_COMBINED_BGR_640x640_NONE_NONE_EXP21_enc.dat"

Model NOT supporting segmentations (default, faster):

[DETECTION MODELS]

model_filename="models/CNN_DETECTTF2LITE_COMBINED_BGR_640x640_NONE_NONE_EXP20_enc.dat"

Model with segmentations

model_filename="models/CNN_DETECTTF2LITE_COMBINED_BGR_640x640_NONE_NONE_EXP21_enc.dat"

• Modify modules-v7/x86_64/802-generic.gen-gen-v7.12/config.ini

In the [DET PARAMETERS] section, configure the segmentation settings:

o use_segmentation (True / False) – Enables or disables segmentations.

o rescale_segmentation (True / False) – Determines whether segmentation masks are scaled

to the input image size.

Segmentations enabled, real size masks:

use_segmentation = True

rescale_segmentation= True

Segmentations enabled, reduced data transfer (masks require resizing by the user):

use_segmentation = True

rescale_segmentation= False

Segmentations disabled, faster detection:

use_segmentation = False

Note: These settings may change in future releases!

3. Run the build script (buildDocker)

Use the buildDocker script located in the [PACKAGE]/ directory to build the Docker image:

./buildDocker

4-17

Eyedea Recognition, s.r.o.

The Docker image is built using the following command:

docker build -t mmr-anpr-rest-server .

The -t option specifies the name of the new Docker image.

4.4 Running the Docker image

1. Set the application variables (env-GPU.list or env-CPU.list)

The application settings (license server address, number of threads, ...) are loaded from the system

environment variables by the application. The supported variables are defined in the env-GPU.list

and env-CPU.list files (the first one is intended to use the GPU for computation, the other uses the

CPU). One of these files is passed to the Docker during the image initialization and its variables are

available in the Docker container as system environment variables.

In the following overview, <ENGINE> stands for: LPM_DETECTOR, LPM_PLATE_OCR, MMR_PLATE

and MMR_BOX.

HASP_REMOTE_SERVERADDR

The address of the Sentinel License Manager server with the valid

license. If the licenses are on the Docker host, you can usually set the IP

address to 10.0.75.1 or 172.17.0.1.

LPM_DETECTOR_MODULE_ID

The three-digit identifiers of LPM modules used for the detection and

the plate OCR, respectively. The appropriate *.tar.gz archives must be

in the [PACKAGE]/LPM-modules directory.

Multiple comma-separated module identifiers can be specified; the first

one is used as the default.

For the detection, the usage of all-in-one detection module 802 is

recommended.

LPM_PLATE_OCR_MODULE_ID

MMR_PLATE_MODEL

Specify the binary module names used for license plate based (MMR_*)

and box based (MMRBOX_*) MMR, respectively. The default MMR

modules are *_VCMMGVCT_* which recognize view, category, make,

model, generation, variation, color and tags. If you do not have licenses

for all these features or prefer fast versions (instead of default precise

ones), select the appropriate data files from the [PACKAGE]/Eyedea-

MMR-${MMR_VERSION}.tar.gz/${MMR_PATH}/model directory. See the

MMR documentation for details.

Multiple comma-separated module names can be specified; the first one

is used as the default.

MMR_BOX_MODEL

<ENGINE>_NUMTHREADS

The number of engine’s threads to initialize. Set the variable to 0 to

disable the given engine. Set -1 to select the number of threads

automatically (1 for CPU, or 1 for each <ENGINE>_GPU_ID in case of GPU

computation mode).

Note: When running on CPU, the number of LPM Detector threads is

limited to 1 because it internally uses the optimal number of CPU

threads.

<ENGINE>_COMPUTATION_MODE
Specifies whether the given engine runs on CPU, or GPU. (Certain older

LPM Detectors may support only CPU.)

<ENGINE>_GPU_ID
Relevant only for GPU computation. Specifies the 0-based index or

indexes of GPU devices to compute on. If more GPUs are available, you

can assign a comma separated list of indexes to a single engine

4-18

Eyedea Recognition, s.r.o.

(e.g.: MMR_BOX_GPU_ID=0,1) or distribute them among multiple engines

(e.g.: LPM_PLATE_OCR_GPU_ID=0 MMR_PLATE_GPU_ID=1).

LOG_STATS_PERIOD_REQUEST

Specifies whether and, if necessary, with what period recognition

statistics should be logged to a file. Set a positive integer N to log

recognition statistics to a new file every N-th request, or 0 to disable

recognition statistics logging.

See Log files chapter for details.

LOG_ERRORS
Specifies whether to log errors to a file. Set 1 to enable, or 0 to disable

errors and warnings logging. See Log files chapter for details.

Check the SDK Engine Overview chapter to select the appropriate SDK engines for your use case.

Example:

Let's have the env-GPU.list file with the following configuration (only the relevant variables

listed for brevity):

HASP_REMOTE_SERVERADDR=172.17.0.1

LPM_DETECTOR_MODULE_ID=802

LPM_DETECTOR_NUMTHREADS=1

LPM_DETECTOR_COMPUTATION_MODE=GPU

LPM_DETECTOR_GPU_ID=0

LPM_PLATE_OCR_MODULE_ID=801,800

LPM_PLATE_OCR_NUMTHREADS=1

LPM_PLATE_OCR_COMPUTATION_MODE=GPU

LPM_PLATE_OCR_GPU_ID=0

MMR_PLATE_MODEL=MMR_VCCT_FAST_2025Q2.dat

MMR_PLATE_NUMTHREADS=1

MMR_PLATE_COMPUTATION_MODE=GPU

MMR_PLATE_GPU_ID=0

MMR_BOX_NUMTHREADS=0

LOG_STATS_PERIOD_REQUEST=1000

LOG_ERRORS=1

The license key with the valid licenses must be plugged into the current machine.

There will be four running SDK engines: LPM Detector, two different modules of LPM Plate

OCR, and License Plate based MMR, each of them running in one thread on the GPU. The Box

based MMR engine will be disabled.

LPM Detector will use the all-in-one detection module 802; LPM Plate OCR will use the global

module 801 (as the default one) and the European module 800 (used if requested); the MMR

will use the fast model to recognize only view, category, color and tags.

Recognition statistics will be saved to a file after every 1000th recognition request is processed.

Any error and warning occurrences will be saved to files, too.

2. Run the image (runDockerGPU or runDockerCPU)

Use the runDockerGPU or runDockerCPU script located in the [PACKAGE]/ directory to run the built

Docker image with / without the support for GPU computation. Edit these scripts if needed.

4-19

Eyedea Recognition, s.r.o.

runDockerGPU – support for GPU computation:

docker run --gpus device=0 --env-file env-GPU.list -p 8080:8080 mmr-anpr-

rest-server

runDockerCPU – CPU computation only:

docker run --env-file env-CPU.list -p 8080:8080 mmr-anpr-rest-server

Notes:

The --env-file option specifies the file with the environment variables.

The -p option publishes port 8080 in the container and maps it to the host's port 8080.

The --gpus option specifies GPU device(s) used by the container. Possibilities:

o Use a GPU device using its index: --gpus device=0

o Use multiple GPU devices using their indexes: --gpus '"device=2,3"'

o Use all available GPU devices: --gpus all

The server tries to initialize all engine instances specified in the env-*.list file. Check the error output

for details if there are problems starting any engine. After launching the Docker container, the

application is accessible at:

http://[MACHINE_IP]:8080/RESTServer/

You can check the status of the engines on the application home page or by requesting

the serverSystemInfo. "DISABLED" means that no thread was requested for the given engine,

"FAILED TO START" means that all requested threads of the given engine could not be started;

in both cases, the server handles requests and returns data obtained by other running engines

(unless the user request explicitly includes a task processed by an engine that is not running).

The engine status never changes when the container is started. If an engine encounters a license

problem after the successful initialization, its status will still be "RUNNING", but the response

to a request for that engine will have a status code of 500 with a message indicating the

problematic engine (e.g.: "Error during OCR processing. Computation error. Please check your

licenses.").

4.5 Log files

There is a possibility to enable logging of recognition statistics and errors in order to regularly

monitor the server usage and report problems. Logging can be enabled by setting the corresponding

variable in the env-*.list file.

If enabled, each statistics record or problem produces a new file <Type>_<year>-<month>-

<day>_<hour>-<minute>-<second>-<millisecond>.log in the Docker container's

/usr/local/tomcat/webapps/RESTServer_data/logs/ folder.

Log file name

The following table lists possible values of <Type> in the log file name:

Type Description

Stats Recognition statistics.

BadRequest 400 Bad Request response status code is returned.

ErrorResponse 500 Internal Server Error response status code is returned.

4-20

Eyedea Recognition, s.r.o.

RuntimeError More serious problem during server startup or recognition processing.

RuntimeWarning Less serious problem during server startup or recognition processing.

Recognition statistics

Recognition statistics log files contain a JSON object which contains the following items:

Response item Description Data type

requestTimestamp Date and time of the user request with a millisecond precision. String

responseTimestamp Date and time of the server response with a millisecond precision. String

serverStartedTimestamp Date and time when the server started with a millisecond precision. String

totalTaskCount Number of user recognition requests (including erroneous). Integer

totalDetectionCount Number of processed detection computation tasks. Integer

totalOcrCount Number of processed OCR computation tasks. Integer

totalMmrCount Number of processed MMR computation tasks. Integer

Errors

Error log files contain a text message describing the problem.

Notes

To run the Docker container with a volume to store log files on the host, add

-v $PWD/logs:/usr/local/tomcat/webapps/RESTServer_data/logs to the runDocker* script.

The time zone used for date and time associated with log files depends on the Docker container

locale, which is UTC by default. To use the host time zone instead, add

-v /etc/timezone:/etc/timezone:ro to the runDocker* script.

https://docs.docker.com/storage/volumes/

5-21

Eyedea Recognition, s.r.o.

5 REST API Documentation

5.1 SDK Engine Overview

Which SDK engines do you need? Use the combination of the SDK engines from the following table.

Use Case SDK Engine

Plate detection LPM Detector

Vehicle detection LPM Detector (module 802)

Windshield detection LPM Detector (module 802)

Wheel detection LPM Detector (module 802)

Segmentation LPM Detector (module 802, if explicitly enabled)

Plate OCR LPM Plate OCR

Vehicle recognition LPM License Plate based or MMR Box based

LPM Detector detects plates on vehicles (license plates, ADR and trash plates, etc.). Module 802 also

detects boxes (whole vehicles and some other "road users" like pedestrians, kickbikes, etc.), windshields

and wheels. Module 802 is currently the only module that supports grouping of road users into

combinations; if explicitly enabled when building the Docker image, it also supports segmentation.

LPM Plate OCR recognizes the text and type of plates detected by LPM License Plate Detector or

provided in the request.

MMR License Plate based can recognize the view, category, make, model, generation, variation, color

and tags of vehicles specified by their license plate. Either LPM Detector detecting plates is needed, or

the license plate detections must be provided in the request.

MMR Box based recognizes the view, category, make, model, generation, variation, color and tags of

vehicles (or "road users") specified by their bounding box. Either LPM Detector detecting boxes

(module 802) is needed, or the box detections must be provided in the request.

LPM modules

The following table lists the LPM modules shipped with the current version of MMR+ANPR REST

Server.

LPM module Detected objects OCR region

553 Plates Americas

555 Plates Middle East and Africa (selected countries)

556 Plates Asia (selected countries)

557 Plates Oceania

800 Plates Europe

5-22

Eyedea Recognition, s.r.o.

801 Plates Worldwide (selected countries)

802
Plates, boxes, windshields, wheels

Segmentation (if explicitly enabled)
-

Whether an LPM module is available depends on the MMR+ANPR REST Server settings. See the

chapter Running the Docker image for details.

MMR modules

The following table explains the meaning of each part of the MMR binary module names shipped with

the current version of MMR+ANPR REST Server.

MMR module Description

MMR_* License plate based MMR module

MMRBOX_* Box based MMR module

VCCT Recognizes view, category, color and tags

VCMCT Recognizes view, category, make, color and tags

VCMMCT Recognizes view, category, make, model, color and tags

VCMMGVCT Recognizes view, category, make, model, generation, variation, color and tags

FAST Fast MMR module

PREC Precise MMR module

For a more detailed description, check the Eyedea MMR SDK documentation.

Whether an MMR module is available depends on the MMR+ANPR REST Server settings. See the

chapter Running the Docker image for details.

5.2 Response Status Codes

The following table lists all response status codes MMR+ANPR REST Server returns.

Status Code Meaning

200 Success.

400 Bad Request. The request was invalid. The error message provides the details.

500
Internal Server Error. Most of these errors are caused by a licensing issue. The error message

provides the details.

5.3 Entry point

SERVER_IP:8080/RESTServer

5.4 System Info

System info contains information about system resources and SDK engines.

5-23

Eyedea Recognition, s.r.o.

Main web page with real time server monitoring

Endpoint: /

HTTP Method: GET

Consumes Media Type: -

Produces Media Type: text/html

URL Parameters: -

Data Parameters: -

CURL Command Example:

curl -X GET -H "Accept: text/html" http://localhost:8080/RESTServer/

Response Example:

Text output with server monitoring information

Endpoint: /

HTTP Method: GET

Consumes Media Type: -

Produces Media Type: text/plain

5-24

Eyedea Recognition, s.r.o.

URL Parameters: -

Data Parameters: -

CURL Command Example:

curl -X GET -H "Accept: text/plain" http://localhost:8080/RESTServer/

Response Example:

Current time: 2024-12-06 13:00:55

Started on: 2024-12-06 12:53:54

System:

 - Average load: 2.26%

 - Used memory: 26.59% (8.33 GB)

GPU 0 (NVIDIA GeForce RTX 3090 Ti):

 - GPU Utilization: 1%

 - Free memory: 20838 / 24247 MB

LPM Detector 802:

 - Engine version: v7.7.0-2024-11-05-Ubuntu-18.04-hasp9.0

 - Module ID: 802

 - Module version: 802-generic.gen-none-v7.9

 - Computation mode: GPU

 - Status: RUNNING

 - Number of running threads: 1

 - Number of erroneous tasks: 0

 - Number of processed tasks: 12

 - Number of waiting tasks: 0

LPM OCR 801:

 - Engine version: v7.7.0-2024-11-05-Ubuntu-18.04-hasp9.0

 - Module ID: 801

 - Module version: 801-generic.gen-gen-v7.11

 - Computation mode: GPU

 - Status: RUNNING

 - Number of running threads: 1

 - Number of erroneous tasks: 0

 - Number of processed tasks: 11

 - Number of waiting tasks: 0

LPM OCR 553:

 - Engine version: v7.7.0-2024-11-05-Ubuntu-18.04-hasp9.0

 - Module ID: 553

 - Module version: 553-frontal.lp-na-v7.13

 - Computation mode: GPU

 - Status: RUNNING

 - Number of running threads: 1

 - Number of erroneous tasks: 0

 - Number of processed tasks: 2

 - Number of waiting tasks: 0

LPM OCR 800:

 - Engine version: v7.7.0-2024-11-05-Ubuntu-18.04-hasp9.0

 - Module ID: 800

 - Module version: 800-frontal.lp-eu-v7.28

 - Computation mode: GPU

 - Status: RUNNING

 - Number of running threads: 1

 - Number of erroneous tasks: 0

 - Number of processed tasks: 3

 - Number of waiting tasks: 0

MMR Plate based:

5-25

Eyedea Recognition, s.r.o.

 - Engine version: 2.24.0-Ubuntu-20.04-x86_64-HASP

 - Module: MMR_VCMMGVCT_PREC_2024Q4.dat

 - Module version: 20241120

 - Computation mode: GPU

 - Status: RUNNING

 - Number of running threads: 1

 - Number of erroneous tasks: 0

 - Number of processed tasks: 10

 - Number of waiting tasks: 0

MMR Box based:

 - Engine version: 2.24.0-Ubuntu-20.04-x86_64-HASP

 - Module: MMRBOX_VCMMGVCT_PREC_2024Q4.dat

 - Module version: 20241123

 - Computation mode: GPU

 - Status: RUNNING

 - Number of running threads: 1

 - Number of erroneous tasks: 0

 - Number of processed tasks: 14

 - Number of waiting tasks: 0

Get detailed server system info

Endpoint: /info

HTTP Method: GET

Consumes Media Type: -

Produces Media Type: application/json

URL Parameters: -

Data Parameters: -

CURL Command Example:

curl -X GET http://localhost:8080/RESTServer/info

Response Example:

{

 "timestamp": 1733490063140,

 "serverStartedTimestamp": 1733489634062,
 "system": {

 "cpuUsage": 7.1005917,

 "memoryUsage": 26.839764,

 "memoryUsageBytes": 9027874816,

 "gpus": [

 {

 "id": 0,

 "name": " NVIDIA GeForce RTX 3090 Ti",
 "totalMemoryMB": 24247,

 "freeMemoryMB": 20780,

 "gpuUtilizationPerc": 3

 }

]

 },

 "engines": [

 {

 "computationMode": "GPU",

 "engineName": "LPM",

 "engineType": "Detector",

5-26

Eyedea Recognition, s.r.o.

 "engineVersion": "v7.7.0-2024-11-05-Ubuntu-18.04-hasp9.0",

 "moduleId": 802,

 "moduleVersion": "802-generic.gen-none-v7.9",

 "numComputingThreads": 1,

 "numErroneousTasks": 0,

 "numProcessedTasks": 12,

 "numWaitingTasks": 0,

 "status": "RUNNING",

 "task": "DETECTION"

 },

 {

 "computationMode": "GPU",

 "engineName": "LPM",

 "engineType": "OCR",

 "engineVersion": "v7.7.0-2024-11-05-Ubuntu-18.04-hasp9.0",

 "moduleId": 801,

 "moduleVersion": "801-generic.gen-gen-v7.11",

 "numComputingThreads": 1,

 "numErroneousTasks": 0,

 "numProcessedTasks": 11,

 "numWaitingTasks": 0,

 "status": "RUNNING",

 "task": "OCR"

 },

 {

 "computationMode": "GPU",

 "engineName": "LPM",

 "engineType": "OCR",

 "engineVersion": "v7.7.0-2024-11-05-Ubuntu-18.04-hasp9.0",

 "moduleId": 553,

 "moduleVersion": "553-frontal.lp-na-v7.13",

 "numComputingThreads": 1,

 "numErroneousTasks": 0,

 "numProcessedTasks": 2,

 "numWaitingTasks": 0,

 "status": "RUNNING",

 "task": "OCR"

 },

 {

 "computationMode": "GPU",

 "engineName": "LPM",

 "engineType": "OCR",

 "engineVersion": "v7.7.0-2024-11-05-Ubuntu-18.04-hasp9.0",

 "moduleId": 800,

 "moduleVersion": "800-frontal.lp-eu-v7.28",

 "numComputingThreads": 1,

 "numErroneousTasks": 0,

 "numProcessedTasks": 3,

 "numWaitingTasks": 0,

 "status": "RUNNING",

 "task": "OCR"

 }, {

 "computationMode": "GPU",

 "engineName": "MMR",

 "engineType": "Plate based",

 "engineVersion": "2.24.0-Ubuntu-20.04-x86_64-HASP",

 "moduleName": "MMR_VCMMGVCT_PREC_2024Q4.dat",

 "moduleVersion": "20241120",

 "numComputingThreads": 1,

 "numErroneousTasks": 0,

 "numProcessedTasks": 10,

 "numWaitingTasks": 0,

 "status": "RUNNING",

 "task": "MMR"

 },

 {

 "computationMode": "GPU",

5-27

Eyedea Recognition, s.r.o.

 "engineName": "MMR",

 "engineType": "Box based",

 "engineVersion": "2.24.0-Ubuntu-20.04-x86_64-HASP",

 "moduleName": "MMRBOX_VCMMGVCT_PREC_2024Q4.dat",

 "moduleVersion": "20241123",

 "numComputingThreads": 1,

 "numErroneousTasks": 0,

 "numProcessedTasks": 14,

 "numWaitingTasks": 0,

 "status": "RUNNING",

 "task": "MMR"

 }

]

}

Response Definitions:

The following table describes each item in the response.

Response item Description Data type

timestamp Current system time in milliseconds. Integer

serverStartedTimestamp System time in milliseconds when the server started. Integer

system System information Object

system/cpuUsage Recent CPU usage for the whole system in percent.
Decimal

number

system/memoryUsage Amount of physical memory used by any process in percent.
Decimal

number

system/memoryUsageBytes Amount of physical memory used by any process in bytes. Integer

system/gpus Information about available GPU devices.
Array of

objects

system/gpus/id GPU device ID. Integer

system/gpus/name GPU device name. String

system/gpus/totalMemoryMB Total amount of physical GPU device memory in megabytes. Integer

system/gpus/freeMemoryMB Amount of free physical GPU device memory in megabytes. Integer

system/gpus/gpuUtilizationPerc Utilization of the GPU device in percent. Integer

engines Information about the SDK engines.
Array of

objects

engines/computationMode
Type of processing unit used for computation. Either "CPU", or

"GPU".
String

engines/engineName SDK engine name. String

engines/engineType SDK engine type. Either "Detector", "OCR", or "MMR". String

engines/engineVersion SDK engine version. String

engines/moduleId DK engine module ID. Integer

5-28

Eyedea Recognition, s.r.o.

engines/moduleName SDK engine module name. String

engines/moduleVersion SDK engine module version. String

engines/numComputingThreads Number of initialized engine’s threads. Integer

engines/numErroneousTasks Number of computational tasks which ended in an error. Integer

engines/numProcessedTasks Number of successfully processed computational tasks. Integer

engines/numWaitingTasks Number of queued computational tasks to be processed. Integer

engines/status

SDK engine status. Either "RUNNING" (at least 1 thread

successfully initialized), "DISABLED" (no thread requested), or

"FAILED TO START" (all requested threads could not be started).

String

engines/task
The computational task associated with the SDK engine. Either

"DETECTION", "OCR", or "MMR".
String

5.5 Recognition

Recognition provides information about recognized road users and their components in the input image.

Supported image formats: JPG, JPEG, PNG, BMP, TIFF, WEBP, AVIF.

Web page with image upload and recognition functionality using the license
plate, or box detector

Endpoint: /recognition

HTTP Method: GET

Consumes Media Type: -

Produces Media Type: text/html

URL Parameters: -

Data Parameters: -

CURL Command Example:

curl -X GET http://localhost:8080/RESTServer/recognition

Response Examples:

All supported objects:

5-29

Eyedea Recognition, s.r.o.

Boxes only:

Notes:

LPM detector, LPM Plate OCR and MMR (compatible with the detector) engines must be

running for both ANPR and MMR results to be displayed.

The ANPR section displays the OCR result of license plates. If multiple license plates are

detected on one vehicle, the OCR of the most confident detection is selected.

Basic information about the detected objects in the image is displayed as a tooltip when you

hover the mouse cursor over them.

Occluded attribute is based on the value of occlusion: if occlusion is greater or equal to 0.25,

the plate is considered to be occluded (marked with a green ✔); otherwise it is considered to

be not occluded (marked with a red ✘). The plate is considered unreadable if unreadable is

greater or equal to 0.98.

The score of an MMR tag (in the MMR tags section) is displayed as a tooltip when you hover

the mouse cursor over it.

5-30

Eyedea Recognition, s.r.o.

Detect and/or recognize license plates or vehicles in the input image

Endpoint: /recognition

HTTP Method: POST

Consumes Media Type: multipart/form-data

Produces Media Type: application/json

URL Parameters: -

Data Parameters:

file – form data parameter containing input image

request – (optional) JSON object specifying the recognition request:

Request item Description
Data

type

tasks

An array of requested computational tasks: "DETECTION",

"SEGMENTATION", "OCR", "MMR" (case insensitive). Optional;

if absent, all available tasks are applied depending on other request

items. The SEGMENTATION task is only allowed if the

DETECTION task is included (SEGMENTATION cannot be used

alone or with tasks other than DETECTION).

Array of

strings;

optional

combinations

An array containing combinations of detected road user objects (box

and/or plates). Road users in a combination belong to each other and

are usually physically connected. If absent, the detections must be

obtained by the detector using the DETECTION task. Allowed only

in combination with the [OCR, MMR], [OCR] and [MMR] tasks

(without the DETECTION task).

Array of

objects;

optional

combinations/roadUsers

An array containing road users belonging to the combination. Road

users sharing the same combination belong to each other and are

usually physically connected.

Array of

objects

combinations/roadUsers/box Information about the detected vehicle.
Object;

optional

combinations/roadUsers/box/
position

Information about the detected vehicle bounding box location in the

input image.
Object

combinations/roadUsers/box/

position/topLeftCol

The horizontal coordinate of the top-left corner of the box within the

image.

Decimal

number

combinations/roadUsers/box/
position/topLeftRow

The vertical coordinate of the top-left corner of the box within the

image.

Decimal

number

combinations/roadUsers/box/
position/bottomRightCol

The horizontal coordinate of the bottom-right corner of the box within

the image.

Decimal

number

combinations/roadUsers/box/

position/bottomRightRow

The vertical coordinate of the bottom-right corner of the box within

the image.

Decimal

number

combinations/roadUsers/plates
Information about the detected plates (license plate, ADR or trash

plate, etc.).

Array of

objects;

optional

5-31

Eyedea Recognition, s.r.o.

combinations/roadUsers/plates/

position

Information about the detected plate location in the input image.

Mandatory for OCR. Optional for MMR; if absent, the center

coordinates, rotation and pixelsPerMeter must be provided.

Object;

optional

combinations/roadUsers/plates/
position/topLeftCol

The horizontal coordinate of the top-left corner of the plate within the

image.

Decimal

number

combinations/roadUsers/plates/
position/topLeftRow

The vertical coordinate of the top-left corner of the plate within the

image.

Decimal

number

combinations/roadUsers/plates/

position/topRightCol

The horizontal coordinate of the top-right corner of the plate within

the image.

Decimal

number

combinations/roadUsers/plates/
position/topRightCol

The vertical coordinate of the top-right corner of the plate within the

image.

Decimal

number

combinations/roadUsers/plates/
position/bottomRightCol

The horizontal coordinate of the bottom-right corner of the plate

within the image.

Decimal

number

combinations/roadUsers/plates/

position/bottomRightCol

The vertical coordinate of the bottom-right corner of the plate within

the image.

Decimal

number

combinations/roadUsers/plates/
position/bottomLeftCol

The horizontal coordinate of the bottom-left corner of the plate within

the image.

Decimal

number

combinations/roadUsers/plates/
position/bottomLeftRow

The vertical coordinate of the bottom-left corner of the plate within

the image.

Decimal

number

combinations/roadUsers/plates/

centerCol

The horizontal coordinate of the plate center within the image.

Ignored for OCR. Optional for MMR; if absent, position (the

coordinates of all four corners) must be provided.

Decimal

number;

optional

combinations/roadUsers/plates/

centerRow

The vertical coordinate of the plate center within the image. Ignored

for OCR. Optional for MMR; if absent, position (the coordinates of

all four corners) must be provided.

Decimal

number;

optional

combinations/roadUsers/plates/

rotation

Clockwise correction of the source image in degrees. Ignored for

OCR. Optional for MMR; if absent, position (the coordinates of all

four corners) must be provided.

Decimal

number;

optional

combinations/roadUsers/plates/

pixelsPerMeter

The real-world scale in pixels per meter of the image computed on the

plate. For example, plate of width = 300 millimeters, photographed to

have 150 pixels, has 150 / 0.3 = 500 pixels per meter scale. Ignored

for OCR. Optional for MMR; if absent, position (the coordinates of

all four corners) must and dimension should be provided.

Decimal

number;

optional

combinations/roadUsers/plates/

dimension

The physical dimensions of the plate. Ignored for OCR. Optional for

MMR; if absent, pixelsPerMeter should be provided.

Object;

optional

combinations/roadUsers/plates/

dimension/width
The physical width of the plate in millimeters. Integer

combinations/roadUsers/plates/

dimension/height
The physical height of the plate in millimeters. Integer

requestedDetectionTypes

An array of object types to be detected by the detector: "BOX",

"PLATE", "WINDSHIELD", "WHEEL" (case insensitive). Optional;

if absent, detections of all types supported by the detector will be

returned. Allowed only if the tasks contain DETECTION.

Array of

objects;

optional

5-32

Eyedea Recognition, s.r.o.

requestedSegmentationTypes

An array of object types for which segmentations are returned:

"BOX", "PLATE", "WINDSHIELD", "WHEEL" (case insensitive).

Optional; if absent, segmentations for all detected objects will be

returned. Must be a subset of requestedDetectionTypes, if specified.

Allowed only if the tasks contain SEGMENTATION.

Array of

objects;

optional

roi

The area of the input image to be scanned by the detector. Optional;

if absent, the whole image will be scanned. Allowed only if the tasks

contain DETECTION.

Object;

optional

roi/topLeftCol
The horizontal coordinate of the top-left corner of the region of

interest within the image.
Integer

roi/topLeftRow
The vertical coordinate of the top-left corner of the region of interest

within the image.
Integer

roi/bottomRightCol
The horizontal coordinate of the bottom-right corner of the region of

interest within the image.
Integer

roi/bottomRightRow
The vertical coordinate of the bottom-right corner of the region of

interest within the image.
Integer

detectionModuleId

The three-digit LPM Detector identifier to be used for the detection

(see the LPM modules table). If absent, the default one will be used.

Allowed only if the tasks contain DETECTION.

Integer;

optional

ocrModuleId

The three-digit LPM Plate OCR identifier to be used for the OCR

computation (see the LPM modules table). Optional; if absent, the

default one will be used. Allowed only for the

requestedDetectionTypes containing PLATE and tasks containing

OCR.

Integer;

optional

mmrPreference

The preferred type of object for which the MMR is computed. Either

"BOX", or "PLATE" (case insensitive). Optional; if absent, BOX is

preferred. Allowed only if the tasks contain MMR. Must not be

combined with the mmrModuleNames containing a single module

name.

String;

optional

mmrModuleNames

An object containing the names of the binary modules used for the

MMR computation. Optional; if absent, the default ones (depending

on the mmrPreference) will be used. Allowed only if the tasks contain

MMR.

Object;

optional

mmrModuleNames/box

The name of the binary module used for the MMR Box computation,

e.g. "MMRBOX_VCMMGVCT_PREC_2025Q2.dat" (case insen-

sitive). Optional; if absent, the MMR Box engine will not be used.

String;

optional

mmrModuleNames/plate

The name of the binary module used for the MMR Plate computation,

e.g. "MMR_VCMMGVCT_PREC_2025Q2.dat" (case insensitive).

Optional; if absent, the MMR Plate engine will not be used.

String;

optional

Notes:

Request can contain manual detections. In that case, the tasks must not contain

"DETECTION" (the detector will not be used). Each roadUser (vehicle) can contain one box

and/or one or more plates. The encapsulating combinations are sets of one or more

roadUsers, e.g. a tractor with a trailer. The combinations structure will be projected into the

response.

5-33

Eyedea Recognition, s.r.o.

The segmentation-related request fields will only take effect if they are supported by the

detector (currently only module 802) and are explicitly enabled when building the Docker

image.

For the OCR of a manually specified plate, its position (all four corners) must be specified.

If a roadUser contains more than one detected object (and MMR task is requested), the MMR

is computed using only one of them based on the mmrPreference. If there are multiple plates

and one of them is to be used for the MMR, the license plate with the highest detection score

will be selected.

If the mmrModuleNames element is specified with both box and plate, the box module will

be used for the MMR Box computation, and the plate module will be used for the MMR Plate

computation. If only one of these modules is specified, only the corresponding engine will be

used for the MMR computation. The mmrPreference is allowed only when

mmrModuleNames include both box and plate elements or when mmrModuleNames are

not specified at all (using the default MMR modules).

For the MMR of a manually specified plate, its center coordinates (centerCol and

centerRow), rotation and pixelsPerMeter need to be known. If not specified, they can be

estimated from the plate corners (position); however, for the more accurate estimation of

pixelsPerMeter parameter, dimension should also be specified.

CURL Command Examples:

Default request: detection, possibly segmentation, plate OCR and MMR

curl -X POST \

 -H "Content-Type: multipart/form-data" \

 -F "file=@image.jpg" \

 http://localhost:8080/RESTServer/recognition

Request in CURL command: plate detection and possibly segmentation, OCR and MMR

curl -X POST \

 -H "Content-Type: multipart/form-data" \

 -F "file=@image.jpg" \

 -F "request={\"requestedDetectionTypes\":[\"PLATE\"]}" \

 http://localhost:8080/RESTServer/recognition

Request in JSON string (see JSON string examples below)

curl -X POST \

 -H "Content-Type: multipart/form-data" \

 -F "file=@image.jpg" \

 -F "request=@request.json" \

 http://localhost:8080/RESTServer/recognition

JSON string example: box and plate detection and (plate) OCR

{

 "tasks": ["DETECTION", "OCR"],

 "requestedDetectionTypes": ["BOX", "PLATE"]

}

JSON string example: box detection, possibly segmentation and MMR in the specified

region of interest

{

 "requestedDetectionTypes": ["BOX"],

 "roi": {

 "topLeftCol": 176, "topLeftRow": 362,

 "bottomRightCol": 1234, "bottomRightRow": 1000

 }

5-34

Eyedea Recognition, s.r.o.

}

JSON string example: detection, possibly segmentation, (plate) OCR and MMR for

American region (LPM Plate OCR module 553)

{

 "ocrModuleId": 553

}

JSON string example: MMR based on the specified box detection

{

 "combinations": [{ "roadUsers": [{ "box": {

 "position": {

 "topLeftCol": 5, "topLeftRow": 69,

 "bottomRightCol": 954, "bottomRightRow": 642

 }

 } }] }]

}

JSON string example: MMR based on the specified plate detection

{

 "combinations": [{ "roadUsers": [{ "plates": [{

 "centerCol": 176.5,

 "centerRow": 362.0,

 "rotation": -5.1,

 "pixelsPerMeter": 214.3

 }] }] }]

}

JSON string example: OCR and MMR based on the specified plate detection

{

 "combinations": [{ "roadUsers": [{ "plates": [{

 "position": {

 "topLeftCol": 817.2, "topLeftRow": 892.5,

 "topRightCol": 1181.4, "topRightRow": 880.0,

 "bottomRightCol": 1184.0, "bottomRightRow": 956.5,

 "bottomLeftCol": 819.9, "bottomLeftRow": 969.0

 }

 }] }] }]

}

Notes:

Content type of the request is multipart/form-data, where the inputs are stored in the form

data fields.

Input image is referenced with filepath (starting with @) in the form field file.

Optional parameter request can be referenced with filepath (starting with @, referencing a

text file containing JSON string) or can contain the whole JSON as a string (special characters

must be escaped).

There are many conditions limiting the use of optional request items. If the element

combination is not allowed, the Bad Request error code 400 is returned with a message

describing the problem. Some of the illegal combinations:

• tasks containing "DETECTION" with manual detections (if the combinations

element is present, no detector is used).

• mmrPreference with tasks explicitly not containing "MMR" (the mmrPreference

element is related to the MMR task).

If the requested detectionModuleId, ocrModuleId or mmrModuleNames engines are not

available, the Bad Request error code 400 is returned with a message describing the problem.

5-35

Eyedea Recognition, s.r.o.

If the requested engines (specified explicitly by tasks, detectionModuleId, ocrModuleId or

mmrModuleNames elements) are available but not running, the Internal Server error code

500 is returned with a message describing the problem. This makes the difference between the

following cases:

• If the request contains tasks containing "MMR" (e.g.: "tasks": ["DETECTION",

"OCR", "MMR"]) and none of the MMR engines are running, the Internal Server error

code 500 is returned.

• If the request does not contain tasks element at all and all MMR engines are disabled,

the server runs just the detection and plate OCR.

Response Example:

Automatic detection of all object types, segmentation, OCR and MMR (vehicle recognition):

{

 "combinations": [

 {

 "roadUsers": [

 {

 "box": {

 "position": {

 "topLeftCol": 199.41193,

 "topLeftRow": 271.33737,

 "bottomRightCol": 1571.3718,

 "bottomRightRow": 1252.3083,

 "score": 0.90291446

 },

 "segmentation": {

 "image": {

 "base64": "iVBORw0KGgoAAAANSUhEUgAAAHEAAAB4CAAAAADgGk...",

 "format": "png"

 },

 "topLeftCol": 199,

 "topLeftRow": 271,

 "width": 1372,

 "height": 981

 },

 "occlusion": 0.07959286

 },

 "plates": [

 {

 "position": {

 "topLeftCol": 812.7648,

 "topLeftRow": 895.68665,

 "topRightCol": 1185.8933,

 "topRightRow": 878.07916,

 "bottomRightCol": 1184.5168,

 "bottomRightRow": 948.3642,

 "bottomLeftCol": 813.41565,

 "bottomLeftRow": 969.4737,

 "score": 0.9539661

 },

 "segmentation": {

 "image": {

 "base64": "iVBORw0KGgoAAAANSUhEUgAAAB8AAAALCAAAAACigg...",

 "format": "png"

 },

 "topLeftCol": 812,

 "topLeftRow": 895,

 "width": 372,

 "height": 72

 },

 "occlusion": 0.011150474,

 "unreadable": 0.029880175,

 "truncated": false,

5-36

Eyedea Recognition, s.r.o.

 "clusterScore": 1.0,

 "type": {

 "value": "N",

 "score": 0.9994254

 },

 "text": {

 "value": "CV50070",

 "score": 0.98916453

 },

 "dimension": {

 "width": 520,

 "height": 110,

 "score": 0.9995647

 }

 }

],

 "windshield": {

 "position": {

 "topLeftCol": 463.58276,

 "topLeftRow": 350.76566,

 "topRightCol": 1199.3582,

 "topRightRow": 313.91553,

 "bottomRightCol": 1319.7712,

 "bottomRightRow": 527.98737,

 "bottomLeftCol": 394.89612,

 "bottomLeftRow": 569.62646,

 "score": 0.94805396

 },

 "segmentation": {

 "image": {

 "base64": "iVBORw0KGgoAAAANSUhEUgAAAEwAAAAfCAAAAABo5n...",

 "format": "png"

 },

 "topLeftCol": 463,

 "topLeftRow": 350,

 "width": 1252,

 "height": 223

 },

 "occlusion": 0.00016997593,

 "clusterScore": 1.0

 },

 "wheels": {

 {

 "position": {

 "topLeftCol": 277.12173,

 "topLeftRow": 899.31586,

 "bottomRightCol": 335.6124,

 "bottomRightRow": 1209.9199,

 "score": 0.28697038

 },

 "segmentation": {

 "image": {

 "base64": "iVBORw0KGgoAAAANSUhEUgAAAAQAAAAmCAAAAADG/m...",

 "format": "png"

 },

 "topLeftCol": 277,

 "topLeftRow": 899,

 "width": 58,

 "height": 310

 },

 "occlusion": 0.65562224,

 "clusterScore": 1.0

 },

],

 "mmr": {

 "view": {

 "value": "frontal",

5-37

Eyedea Recognition, s.r.o.

 "id": 1,

 "score": 0.9999809

 },

 "view8": {

 "value": "frontal+right",

 "id": 8,

 "score": 0.9931924

 },

 "category": {

 "value": "CAR",

 "id": 2,

 "score": 0.99982125

 },

 "make": {

 "value": "VW",

 "id": 43,

 "score": 0.9997004

 },

 "model": {

 "value": "Passat",

 "id": 3569,

 "score": 0.9999137

 },

 "generation": {

 "value": "Mk VI (2005)",

 "id": 3691,

 "score": 0.9998765

 },

 "color": {

 "value": "WHITE",

 "id": 13,

 "score": 0.8964234

 },

 "tags": [

 {

 "name": "ambulance",

 "value": "no",

 "id": 14,

 "score": 0.9952501

 },

 {

 "name": "caravan",

 "value": "no",

 "id": 10,

 "score": 0.9999132

 },

 {

 "name": "fire_brigade",

 "value": "no",

 "id": 16,

 "score": 0.99977297

 },

 {

 "name": "law_enforcement",

 "value": "yes",

 "id": 11,

 "score": 0.9549154

 },

 {

 "name": "pickup",

 "value": "no",

 "id": 38,

 "score": 0.99320036

 },

 {

 "name": "push_bumper",

 "value": "no",

5-38

Eyedea Recognition, s.r.o.

 "id": 30,

 "score": 0.9949509

 },

 {

 "name": "taxi",

 "value": "no",

 "id": 18,

 "score": 0.91902626

 },

 {

 "name": "towed",

 "value": "no",

 "id": 51,

 "score": 0.999879

 }

],

 "input": {

 "box": {

 "topLeftCol": 199.41193,

 "topLeftRow": 271.33737,

 "bottomRightCol": 1571.3718,

 "bottomRightRow": 1252.3083

 }

 }

 }

 }

]

 }

],

 "engines": [

 {

 "task": "DETECTION",

 "moduleId": 802,

 "moduleVersion": "802-generic.gen-none-v7.9"

 },

 {

 "task": "OCR",

 "moduleId": 801,

 "moduleVersion": "801-generic.gen-gen-v7.11"

 },

 {

 "task": "MMR",

 "moduleName": "MMRBOX_VCMMGVCT_PREC_2024Q4.dat",

 "moduleVersion": "20241123"

 }

]

}

Notes:

If the request contains combinations (manual detections), the corresponding elements with

the input values are projected into the combinations response element (in the same order).

However, the position element is copied from the request to the response only if its

encapsulating object contains some information added by the analysis. This means that a

manually detected plate will be returned as an empty element if it is not processed by the OCR;

a manually detected box will never be returned (the MMR result is returned in the mmr

element of the corresponding roadUser).

The engines element lists only SDK engines, which were used to obtain the results. For

example, if the request contains combinations (manual detections), there is no

"DETECTION" task in the engines element.

The segmentation elements can be returned only if this feature is supported by the detector

(currently only module 802 if explicitly enabled before the server is started). The base64

values ending with "..." in the example above are truncated.

5-39

Eyedea Recognition, s.r.o.

Response Definitions:

The following table describes each item in the response.

Response item Description
Data

type

combinations An array containing the detection and recognition results.
Array of

objects

combinations/roadUsers
An array containing clusters of detected objects belonging to a

single road user and recognition results.

Array of

objects

combinations/roadUsers/box Information about the detected vehicle bounding box. Object

combinations/roadUsers/box/

position

Information about the detected vehicle bounding box location

in the input image.
Object

combinations/roadUsers/box/
position/topLeftCol

The horizontal coordinate of the top-left bounding box corner

within the image.

Decimal

number

combinations/roadUsers/box/
position/topLeftRow

The vertical coordinate of the top-left bounding box corner

within the image.

Decimal

number

combinations/roadUsers/box/

position/bottomRightCol

The horizontal coordinate of the bottom-right bounding box

corner within the image.

Decimal

number

combinations/roadUsers/box/
position/bottomRightRow

The vertical coordinate of the bottom-right bounding box

corner within the image.

Decimal

number

combinations/roadUsers/box/
position/score

The vehicle detection confidence factor. Range 0 – 1.
Decimal

number

combinations/roadUsers/box/

segmentation
Information about the detected vehicle segmentation. Object

combinations/roadUsers/box/
segmentation/image

Segmentation image data. Object

combinations/roadUsers/box/
segmentation/image/base64

Base64-encoded segmentation image. String

combinations/roadUsers/box/
segmentation/image/format

Format of the segmentation image (e.g. "png"). String

combinations/roadUsers/box/
segmentation/topLeftCol

The horizontal coordinate of the top-left corner of the

segmentation image within the input image.
Integer

combinations/roadUsers/box/

segmentation/topLeftRow

The vertical coordinate of the top-left corner of the

segmentation image within the input image.
Integer

combinations/roadUsers/box/

segmentation/width

Target width of the segmentation image in the input image. If

the segmentation image width differs from this width, the

segmentation image must be resized by the user.

Integer

combinations/roadUsers/box/
segmentation/height

Target height of the segmentation image in the input image. If

the segmentation image height differs from this height, the

segmentation image must be resized by the user.

Integer

combinations/roadUsers/box/
occlusion

Specifies how much the detected box is occluded. Range 0 (not

occluded) – 1 (fully occluded).

Decimal

number

5-40

Eyedea Recognition, s.r.o.

combinations/roadUsers/plates Information about the detected plates.
Array of

objects

combinations/roadUsers/plates/
position

Information about the detected plate location in the input image. Object

combinations/roadUsers/plates/
position/topLeftCol

The horizontal coordinate of the top-left plate corner within the

image.

Decimal

number

combinations/roadUsers/plates/
position/topLeftRow

The vertical coordinate of the top-left plate corner within the

image.

Decimal

number

combinations/roadUsers/plates/

position/topRightCol

The horizontal coordinate of the top-right plate corner within

the image.

Decimal

number

combinations/roadUsers/plates/
position/topRightCol

The vertical coordinate of the top-right plate corner within the

image.

Decimal

number

combinations/roadUsers/plates/

position/bottomRightCol

The horizontal coordinate of the bottom-right plate corner

within the image.

Decimal

number

combinations/roadUsers/plates/

position/bottomRightCol

The vertical coordinate of the bottom-right plate corner within

the image.

Decimal

number

combinations/roadUsers/plates/
position/bottomLeftCol

The horizontal coordinate of the bottom-left plate corner within

the image.

Decimal

number

combinations/roadUsers/plates/

position/bottomLeftRow

The vertical coordinate of the bottom-left plate corner within

the image.

Decimal

number

combinations/roadUsers/plates/

position/score
The plate detection confidence factor. Range 0 – 1.

Decimal

number

combinations/roadUsers/plates/
segmentation

Information about the detected plate segmentation. Object

combinations/roadUsers/plates/

segmentation/image
Segmentation image data. Object

combinations/roadUsers/plates/

segmentation/image/base64
Base64-encoded segmentation image. String

combinations/roadUsers/plates/

segmentation/image/format
Format of the segmentation image (e.g. "png"). String

combinations/roadUsers/plates/

segmentation/topLeftCol

The horizontal coordinate of the top-left corner of the

segmentation image within the input image.
Integer

combinations/roadUsers/plates/
segmentation/topLeftRow

The vertical coordinate of the top-left corner of the

segmentation image within the input image.
Integer

combinations/roadUsers/plates/
segmentation/width

Target width of the segmentation image in the input image. If

the segmentation image width differs from this width, the

segmentation image must be resized by the user.

Integer

combinations/roadUsers/plates/

segmentation/height

Target height of the segmentation image in the input image. If

the segmentation image height differs from this height, the

segmentation image must be resized by the user.

Integer

combinations/roadUsers/plates/

occlusion

Specifies how much the detected plate is occluded. Range 0

(not occluded) – 1 (fully occluded).

Decimal

number

5-41

Eyedea Recognition, s.r.o.

combinations/roadUsers/plates/

unreadable

Indicates the degree to which the plate is unreadable. Range 0

(readable) – 1 (unreadable).

Decimal

number

combinations/roadUsers/plates/
clusterScore

Confidence factor that the plate belongs to the road user. Range

0 – 1.

Decimal

number

combinations/roadUsers/plates/
type

Information about the recognized plate type. Object

combinations/roadUsers/plates/
type/value

The international country code for license plates; "ADR" or

"TRASH" for ADR plates; "TRAILER" with the international

country code for license plates on trailers. If the value is

"UNK", then it was recognized as a false positive detection.

String

combinations/roadUsers/plates/
type/score

The confidence factor for the type prediction. Range 0 – 1.
Decimal

number

combinations/roadUsers/plates/
text

Information about the recognized plate text. Object

combinations/roadUsers/plates/

text/value

The plate text recognized by the OCR. In case of multi-line text,

the lines are separated by a semicolon (";").
String

combinations/roadUsers/plates/

text/score
The confidence factor for the text prediction. Range 0 – 1.

Decimal

number

combinations/roadUsers/plates/
dimension

The predicted physical dimensions of the detected plate. Object

combinations/roadUsers/plates/
dimension/width

The predicted physical width of the detected plate in

millimeters.
Integer

combinations/roadUsers/plates/

dimension/height

The predicted physical height of the detected plate in

millimeters.
Integer

combinations/roadUsers/plates/

dimension/score
Confidence factor for the dimensions prediction. Range 0 – 1.

Decimal

number

combinations/roadUsers/windshield Information about the detected windshield. Object

combinations/roadUsers/windshield/

position

Information about the detected windshield location in the input

image.
Object

combinations/roadUsers/windshield/
position/topLeftCol

The horizontal coordinate of the top-left windshield corner

within the image.

Decimal

number

combinations/roadUsers/windshield/

position/topLeftRow

The vertical coordinate of the top-left windshield corner within

the image.

Decimal

number

combinations/roadUsers/windshield/

position/topRightCol

The horizontal coordinate of the top-right windshield corner

within the image.

Decimal

number

combinations/roadUsers/windshield/
position/topRightCol

The vertical coordinate of the top-right windshield corner

within the image.

Decimal

number

combinations/roadUsers/windshield/

position/bottomRightCol

The horizontal coordinate of the bottom-right windshield

corner within the image.

Decimal

number

combinations/roadUsers/windshield/

position/bottomRightCol

The vertical coordinate of the bottom-right windshield corner

within the image.

Decimal

number

5-42

Eyedea Recognition, s.r.o.

combinations/roadUsers/windshield/

position/bottomLeftCol

The horizontal coordinate of the bottom-left windshield corner

within the image.

Decimal

number

combinations/roadUsers/windshield/
position/bottomLeftRow

The vertical coordinate of the bottom-left windshield corner

within the image.

Decimal

number

combinations/roadUsers/windshield/

position/score
The windshield detection confidence factor. Range 0 – 1.

Decimal

number

combinations/roadUsers/windshield/

segmentation
Information about the detected windshield segmentation. Object

combinations/roadUsers/windshield/

segmentation/image
Segmentation image data. Object

combinations/roadUsers/windshield/

segmentation/image/base64
Base64-encoded segmentation image. String

combinations/roadUsers/windshield/
segmentation/image/format

Format of the segmentation image (e.g. "png"). String

combinations/roadUsers/windshield/

segmentation/topLeftCol

The horizontal coordinate of the top-left corner of the

segmentation image within the input image.
Integer

combinations/roadUsers/windshield/

segmentation/topLeftRow

The vertical coordinate of the top-left corner of the

segmentation image within the input image.
Integer

combinations/roadUsers/windshield/
segmentation/width

Target width of the segmentation image in the input image. If

the segmentation image width differs from this width, the

segmentation image must be resized by the user.

Integer

combinations/roadUsers/windshield/
segmentation/height

Target height of the segmentation image in the input image. If

the segmentation image height differs from this height, the

segmentation image must be resized by the user.

Integer

combinations/roadUsers/windshield/
occlusion

Specifies how much the detected windshield is occluded. Range

0 (not occluded) – 1 (fully occluded).

Decimal

number

combinations/roadUsers/windshield/

clusterScore

Confidence factor that the windshield belongs to the road user.

Range 0 – 1.

Decimal

number

combinations/roadUsers/wheels Information about the detected wheels.
Array of

objects

combinations/roadUsers/wheels/
position

Information about the detected wheel location in the input

image.
Object

combinations/roadUsers/wheels/

position/topLeftCol

The horizontal coordinate of the top-left wheel corner within

the image.

Decimal

number

combinations/roadUsers/wheels/
position/topLeftRow

The vertical coordinate of the top-left wheel corner within the

image.

Decimal

number

combinations/roadUsers/wheels/

position/bottomRightCol

The horizontal coordinate of the bottom-right wheel corner

within the image.

Decimal

number

combinations/roadUsers/wheels/

position/bottomRightCol

The vertical coordinate of the bottom-right wheel corner within

the image.

Decimal

number

combinations/roadUsers/wheels/
position/score

The wheel detection confidence factor. Range 0 – 1.
Decimal

number

5-43

Eyedea Recognition, s.r.o.

combinations/roadUsers/wheels/

segmentation
Information about the detected wheel segmentation. Object

combinations/roadUsers/wheels/

segmentation/image
Segmentation image data. Object

combinations/roadUsers/wheels/
segmentation/image/base64

Base64-encoded segmentation image. String

combinations/roadUsers/wheels/
segmentation/image/format

Format of the segmentation image (e.g. "png"). String

combinations/roadUsers/wheels/
segmentation/topLeftCol

The horizontal coordinate of the top-left corner of the

segmentation image within the input image.
Integer

combinations/roadUsers/wheels/

segmentation/topLeftRow

The vertical coordinate of the top-left corner of the

segmentation image within the input image.
Integer

combinations/roadUsers/wheels/
segmentation/width

Target width of the segmentation image in the input image. If

the segmentation image width differs from this width, the

segmentation image must be resized by the user.

Integer

combinations/roadUsers/wheels/
segmentation/height

Target height of the segmentation image in the input image. If

the segmentation image height differs from this height, the

segmentation image must be resized by the user.

Integer

combinations/roadUsers/wheels/
occlusion

Specifies how much the detected wheel is occluded. Range 0

(not occluded) – 1 (fully occluded).

Decimal

number

combinations/roadUsers/wheels/

clusterScore

Confidence factor that the wheel belongs to the road user.

Range 0 – 1.

Decimal

number

combinations/roadUsers/mmr Information about the recognized road user’s attributes. Object

combinations/roadUsers/mmr/
view

The recognized road user’s positional information. Object

combinations/roadUsers/mmr/

view/value

The value of the road user's view, either "frontal", "side" or

"rear".
String

combinations/roadUsers/mmr/

view/id
ID of the recognized road user's view. Integer

combinations/roadUsers/mmr/

view/score
The confidence factor for the view result. Range 0 – 1.

Decimal

number

combinations/roadUsers/mmr/
view8

The recognized road user’s positional information with

increased specificity. Only available for Box-based MMR.
Object

combinations/roadUsers/mmr/
view8/value

The value of the road user's view8. Possible values: "frontal

exact", "frontal+left", "frontal+right", "left", "right", "rear

exact", "rear+left", "rear+right".

String

combinations/roadUsers/mmr/
view8/id

ID of the recognized road user's view8. Integer

combinations/roadUsers/mmr/

view8/score
The confidence factor for the view8 result. Range 0 – 1.

Decimal

number

combinations/roadUsers/mmr/

category
The recognized road user's category. Object

5-44

Eyedea Recognition, s.r.o.

combinations/roadUsers/mmr/

category/value

The value of the road user's category, e.g., "BUS", "CAR",

"HVT", ... For the full list of possible categories and their

definition, check the Eyedea MMR SDK documentation.

String

combinations/roadUsers/mmr/

category/id
ID of the recognized road user's category. Integer

combinations/roadUsers/mmr/

category/score
The confidence factor for the category result. Range 0 – 1.

Decimal

number

combinations/roadUsers/mmr/
make

The recognized vehicle manufacturer. Only available for

vehicles.
Object

combinations/roadUsers/mmr/
make/value

The recognized vehicle manufacturer, e.g., "VW", "Ford",

"Fiat", ... For the full list of possible makes, check the Eyedea

MMR SDK documentation.

String

combinations/roadUsers/mmr/
make/id

ID of the recognized vehicle manufacturer. Integer

combinations/roadUsers/mmr/

make/score
The confidence factor for the make result. Range 0 – 1.

Decimal

number

combinations/roadUsers/mmr/

model
The recognized vehicle model. Only available for vehicles. Object

combinations/roadUsers/mmr/

model/value

The recognized vehicle model (vehicle instance defined by a

bodywork), e.g., "Golf", "Mondeo", "500", ...
String

combinations/roadUsers/mmr/

model/id
ID of the recognized vehicle model. Integer

combinations/roadUsers/mmr/
model/score

The confidence factor for the model result. Range 0 – 1.
Decimal

number

combinations/roadUsers/mmr/
generation

The recognized vehicle generation. Only available for vehicles. Object

combinations/roadUsers/mmr/
generation/value

The recognized vehicle generation (vehicle mark and first

model year), e.g., "Mk VI (2019)", "Mk I (2020)", ...
String

combinations/roadUsers/mmr/
generation/id

ID of the recognized vehicle generation. Integer

combinations/roadUsers/mmr/

generation/score
The confidence factor for the generation result. Range 0 – 1.

Decimal

number

combinations/roadUsers/mmr/

variation
The recognized vehicle variation. Only available for vehicles. Object

combinations/roadUsers/mmr/

variation/value

The recognized vehicle variation (vehicle trim level and/or

body type), e.g., "AMG", "AMG-Line SUV", "Coupe", ...
String

combinations/roadUsers/mmr/

variation/id
ID of the recognized vehicle variation. Integer

combinations/roadUsers/mmr/
variation/score

The confidence factor for the variation result. Range 0 – 1.
Decimal

number

combinations/roadUsers/mmr/
color

The recognized vehicle color. Only available for selected

categories.
Object

5-45

Eyedea Recognition, s.r.o.

combinations/roadUsers/mmr/

color/value

The recognized vehicle color, e.g., "BLUE", "GRAY",

"RED", ...
String

combinations/roadUsers/mmr/
color/id

ID of the recognized vehicle color. Integer

combinations/roadUsers/mmr/
color/score

The confidence factor for the color result. Range 0 – 1.
Decimal

number

combinations/roadUsers/mmr/
tags

An array of recognized road user's (usually vehicle) traits. A tag

may typically recognize whether a vehicle belongs to a certain

group. Some tag tasks can only be recognized from a certain

view.

Array of

objects

combinations/roadUsers/mmr/
tags/name

The name of the trait, e.g., "caravan", "ambulance", ... For the

full list of possible tags and their definition, check the Eyedea

MMR SDK documentation.

String

combinations/roadUsers/mmr/
tags/value

The value of the trait. Either "yes", or "no". String

combinations/roadUsers/mmr/
tags/id

ID of the trait value. Integer

combinations/roadUsers/mmr/
tags/score

The confidence factor for the tag value. Range 0 – 1.
Decimal

number

combinations/roadUsers/mmr/

input

The source object within the cluster used for the MMR

computation. Contains either box, or plate object.
Object

combinations/roadUsers/mmr/

input/box

The parameters of the bounding box used for the MMR

computation.
Object

combinations/roadUsers/mmr/
input/box/topLeftCol

The horizontal coordinate of the top-left bounding box corner

within the image.

Decimal

number

combinations/roadUsers/mmr/

input/box/topLeftRow

The vertical coordinate of the top-left bounding box corner

within the image.

Decimal

number

combinations/roadUsers/mmr/
input/box/bottomRightCol

The horizontal coordinate of the bottom-right bounding box

corner within the image.

Decimal

number

combinations/roadUsers/mmr/
input/box/bottomRightRow

The vertical coordinate of the bottom-right bounding box

corner within the image.

Decimal

number

combinations/roadUsers/mmr/
input/plate

The parameters of the plate used for the MMR computation. Object

combinations/roadUsers/mmr/

input/plate/index

The 0-based index of detected plate used for the MMR

computation.
Integer

combinations/roadUsers/mmr/

input/plate/centerCol
The horizontal coordinate of the plate center within the image.

Decimal

number

combinations/roadUsers/mmr/
input/plate/centerRow

The vertical coordinate of the plate center within the image.
Decimal

number

combinations/roadUsers/mmr/

input/plate/rotation
Clockwise correction of the source image in degrees.

Decimal

number

combinations/roadUsers/mmr/

input/plate/pixelsPerMeter
The real-world scale in pixels per meter of the image computed

on the plate. For example, plate of width = 300 millimeters,

Decimal

number

5-46

Eyedea Recognition, s.r.o.

photographed to have 150 pixels, has 150 / 0.3 = 500 pixels per

meter scale.

engines An array containing the detection and recognition results.
Array of

objects

engines/task
The computation task processed by the SDK engine. Either

"DETECTION", "OCR", or "MMR".
String

engines/moduleId SDK engine module ID. Integer

engines/moduleName SDK engine module name. String

engines/moduleVersion SDK engine module version. String

